Home
Class 12
MATHS
int(0)^(pi//2)(dx)/(1+tanx) is...

`int_(0)^(pi//2)(dx)/(1+tanx)` is

A

a multiple of `pi//4`

B

a multiple of `pi//2`

C

equal to `pi//4`

D

a multiple of `pi`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(dx)/(1+cos x)

int_(0)^( pi)(dx)/(1+sin x)

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

int_(0)^(pi)(x)/(1+sinx)dx .

Evaluate : int_0^(pi/2)(dx)/(1+sqrt(tanx))

int_(0)^(pi//2)(tanx)/(1+m^(2)tan^(2)x)\ dx

Evaluate the following integral: int_0^(pi//2)1/(1+tanx) dx

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

Evaluate the following integrals: int_0^(pi//2)(tanx)/(1+m^2tan^2x)dx