Home
Class 12
MATHS
If f(x)=int(1)^(x)(lnt)/(1+t)dt where x ...

If `f(x)=int_(1)^(x)(lnt)/(1+t)dt` where `x gt 0` then the values of `x` satisfying the equation `f(x)+f((1)/(x))=2` are

A

`f((1)/(x))=-int_(1)^(x)(lnt)/(t(1+t))dt`

B

`f((1)/(x))=int_(1)^(x)(lnt)/(t(1+t))dt`

C

`f(x)+f((1)/(x))=0`

D

`f(x)+f((1)/(x))=(1)/(2)(lnx)^(2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_1^x(lnt)/(1+t)dt where x>0, then the values of of x satisfying the equation f(x)+f(1/x)=2 is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x)=int_(x^(m))^(x^(n))(dt)/(lnt),xgt0andngtm, then

If f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R . The value of f'(1//2) is equal to

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .