Home
Class 12
MATHS
Let the definite integral be defined by ...

Let the definite integral be defined by the formula `int_(a)^(b)f(x)dx=(b-a)/2(f(a)+f(b))`. For more accurate result, for `c epsilon (a,b), ` we can use `int_(a)^(b)f(x)dx=int_(a)^(c)f(x)dx+int_(c)^(b)f(x)dx=F(c)` so that for `c=(a+b)/2` we get `int_(a)^(b)f(x)dx=(b-a)/4(f(a)+f(b)+2f(c))`.
If `f''(x)lt0 AA x epsilon (a,b)` and `c` is `a` point such that `altcltb`, and `(c,f(c))` is the point lying on the curve for which `F(c)` is maximum then `f'(c)` is equal to

A

`(f(b)-f(a))/(b-a)`

B

`(2(f(b)f(a)))/(b-a)`

C

`(2f(b)-f(a))/(2b-a)`

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

Suppose we define the definite integral using the following formula int_a^b f(x)dx=(b-a)/2 (f(x)+f(b)) , for more accurate result for c in (a,b), F(c)=(c-a)/2 (f(a)+f(c))+(b-c)/2(f(b)+f(c)) and when c=(a+b)/2, int_a^b f(x)dx=(b-a)/4(f(a)+f(b)+2f(c))

int_(a+c)^(b+c) f(x) dx is equal to

If int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx=10 , then

(1)/(c )int_(ac)^(bc)f((x)/(c ))dx=

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Suppose we define integral using the following formula int_(a)^(b)f(x)dx = (b-a)/(2) (f(a)+f(b)) , for more accurate result for c in (a, b), F(c) = (c-a)/(2) (f(a)+f(c)) + (b-c)/(2)(f(b) + f(c)) . When c = (a+b)/(2) , then int_(a)^(b) f(x)dx = (b-a)/(4)(f(a) + f(b) + 2f(c)) . lim_(trarra)(int_(a)^(t)f(x) dx -((t-a))/(2)(f(t)+f(a)))/((t-a)^(3))=0 forall a Then the degree of f(x) can at most be

Which of the following is incorrect? int_(a+ c)^(b+c)f(x)dx=int_a^bf(x+c)dx int_(ac)^(b c)f(x)dx=cint_a^bf(c x)dx int_(-a)^af(x)dx=1/2int_(-a)^a(f(x)+f(-x)dx None of these

If | int_a ^b f(x) dx| = int_a ^b |f(x)| dx, a lt b , then f(x) = 0 has