Home
Class 12
MATHS
According to Leibritz differentiation un...

According to Leibritz differentiation under the sign of integration can be performed as as below.
(i) `(d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt]=f{Psi(x)}xx(d)/(dx){Psi(x)}-f{phi(x)}xx(d)/(dx){phi(x)}`
(ii) `(d)/(dx)[int_(phi(x))^(Psi(x))f(x,t)dt]=int_(phi(x))^(Psi(x))(del)/(delx)(f(x,t)dt)+f(x,Psi(x))xx(d)/(dx)Psi(x)-f(x,phi(x))xx(d)/(dx)(phi(x))`
The points of maximum of the function `f(x)=int_(0)^(x^(2))(t^(2)-5t+4)/(2+e^(t))dt`

A

`-2,0,2`

B

`-1,1`

C

`2,-2`

D

`0,1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

According to Leibritz differentiation under the sign of integration can be performed as as below. (i) (d)/(dx)[int_(phi(x))^(Psi(x))f(t)dt]=f{Psi(x)}xx(d)/(dx){Psi(x)}-f{phi(x)}xx(d)/(dx){phi(x)} (ii) (d)/(dx)[int_(phi(x))^(Psi(x))f(x,t)dt]=int_(phi(x))^(Psi(x))(del)/(delx)(f(x,t)dt)+f(x,Psi(x))xx(d)/(dx)Psi(x)-f(x,phi(x))xx(d)/(dx)(phi(x)) int_(x^(2))^(x^(3))cost^(2)dt has the derivative

(d)/(dx)(int_(f(x))^(g(x)) phi(t)dt) is equal to

Let f(t)="ln"(t) . Then, (d)/(dx)(int_(x^(2))^(x^(3))f(t)" dt")

If (d)/(dx)(int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2)) sin^(2) tdt)=0, "find" (dy)/(dx).

(d)/(dx)(int_(x^(2))^((x^(3)) (1)/(logt)dt) is equal to

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Evaluate (d)/(dx)(int_(1//x)^(sqrtx) cos t^(2) dt)

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is