Home
Class 12
MATHS
The circle x^(2)+y^(2)+2lamdax=0,lamdain...

The circle `x^(2)+y^(2)+2lamdax=0,lamdainR`, touches the parabola `y^(2)=4x` externally. Then,

A

`lamda=-1`

B

`lamda=1`

C

`lamda=2`

D

`lamdalt-1`

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

The circle x^2+y^2+2lambdax=0,lambda in R , touches the parabola y^2=4x externally. Then, (a) lambda>0 (b) lambda 1 (d) none of these

If the circle x^(2)+y^(2)+2ax=0, a in R touches the parabola y^(2)=4x , them

If the circle x^2 + y^2 + lambdax = 0, lambda epsilon R touches the parabola y^2 = 16x internally, then (A) lambda lt0 (B) lambdagt2 (C) lambdagt0 (D) none of these

The circle x^2+y^2+4lamdax=0 which lamda in R touches the parabola y^2=8x . The value of lamda is given by

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

If the circle x^2+y^2+8x-4y+c=0 touches the circle x^2+y^2+2x+4y-11=0 externally and cuts the circle x^2+y^2-6x+8y+k=0 orthogonally then k =

If the line k^(2)(x-1)+k(y-2)+1=0 touches the parabola y^(2)-4x-4y+8=0 , then k can be

The vertex of the parabola y^(2)+4x-2y+3=0 is