Home
Class 12
MATHS
Prove the equation sqrt((x + 4)^(2) + (y...

Prove the equation `sqrt((x + 4)^(2) + (y + 2)^(2)) - sqrt((x-4)^(2) + (y - 2)^(2)) = 8` represents a hyperbola.

Text Solution

Verified by Experts

The correct Answer is:
`sqrt5/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation |sqrt((x - 1)^(2) + y^(2) ) - sqrt((x + 1)^(2) + y^(2))| = k represents a hyperbola , then k belongs to the set

Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))-sqrt((x-5)^(2)+(y-5)^(2))=4 which represents a hyperbola. Q. Locus of point of intersection of two perpendicular tangents to the hyperbola is

Let P(x, y) be a variable point such that |sqrt((x-1)^(2)+(y-2)^(2))-sqrt((x-5)^(2)+(y-5)^(2))=4 which represents a hyperbola. Q. If origin is shifted to point (3, (7)/(2)) and axes are rotated in anticlockwise through an angle theta , so that the equation of hyperbola reduces to its standard form (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , then theta equals

Solve the equation sqrt(x^(2)+12y)+ sqrt(y^(2)+12x)=33,x+y=23.

If the equation (10x-5)^(2)+(10y -4)^(2)=lambda^(2) (3x+4y-1)^(2) represents a hyperbola then

Show that the equation x^2-2y^2-2x+8y-1=0 represents a hyperbola.

If equation |sqrt((x-tantheta)^(2)+(y-sqrt3tantheta)^(2))-sqrt((x-2tantheta)^(2)+y^(2))|=2,theta in[0,pi]-{(pi)/(2)} represents hyperbola, then find the value of theta .

If equation of hyperbola is 4(2y -x -3)^(2) -9(2x + y - 1)^(2) = 80 , then

The eccentricity of the hyperbola |sqrt((x-3)^2+(y-2)^2)-sqrt((x+1)^2+(y+1)^2)|=1 is ______

The eccentricity of the hyperbola |sqrt((x-3)^2+(y-2)^2)-sqrt((x+1)^2+(y+1)^2)|=1 is ______