Home
Class 12
MATHS
If the hyperhola x^2/a^2 - y^2/b^2 = 1 p...

If the hyperhola `x^2/a^2 - y^2/b^2 = 1` passes through the intersection of `7x+13y-87=0 and 5x-8y+7=0` and its latus rectum is `32sqrt(2)/(5)`, then value of `a` and `b` are respectively. (A) `5/sqrt(3), 2` (B) `5/sqrt(2), 4` (C) `3/sqrt(2), 4` (D) `2, sqrt(3)/5`

Text Solution

Verified by Experts

The correct Answer is:
`a = 5/sqrt2, b = 4 `
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of a and b in each of the (5+3sqrt(2))/(5-3sqrt(2))= a+b sqrt(2)

The length of the tangent of the curve y=x^(2)+1 at (1 ,3) is (A) sqrt(5) (B) 3sqrt(5) (C) 1/2 (D) 3(sqrt(5))/(2)

The radius of the circle passing through the points (1, 2), (5, 2) and (5, -2) is : (A) 5sqrt(2) (B) 2sqrt(5) (C) 3sqrt(2) (D) 2sqrt(2)

Find x and y if: (3/sqrt(5) x-5)+i2 sqrt (5) y= sqrt(2)

If x=sqrt(5)+\ 2, then x-1/x equals (a) 2sqrt(5) (b) 4 (c) 2 (d) sqrt(5)

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

The distance between the parallel lnes y=2x+4 and 6x-3y-5 is (A) 1 (B) 17/sqrt(3) (C) 7sqrt(5)/15 (D) 3sqrt(5)/15

Length of the latus rectum of the parabola sqrt(x) +sqrt(y) = sqrt(a) is (a) a sqrt(2) (b) (a)/(sqrt(2)) (c) a (d) 2a

The radius of the circle touching the straight lines x-2y-1=0 and 3x-6y+7=0 is (A) 1/sqrt(2) (B) sqrt(5)/3 (C) sqrt(3) (D) sqrt(5)

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1