Home
Class 12
MATHS
If the line y = mx + sqrt(a^(2) m^(2) -b...

If the line `y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2)` touches the hyperbola `(x^(2))/(16)-(y^(2))/(3) =1` at the point `(4 sec theta, sqrt(3) tan theta)` then `theta` is

Text Solution

Verified by Experts

The correct Answer is:
`sin^(-1) (b/(am))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the line y=mx + sqrt(a^2 m^2 - b^2) touches the hyperbola x^2/a^2 - y^2/b^2 = 1 at the point (a sec phi, b tan phi) , show that phi = sin^(-1) (b/am) .

Solve sec theta-1=(sqrt(2)-1) tan theta .

Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .

If the line y = mx + 7 sqrt(3) is normal to the hyperbola (x^(2))/(24)-(y^(2))/(18)=1 , then a value of m is :

If the line y=x+sqrt(3) touches the ellipse (x^(2))/(4)+(y^(2))/(1)=1 then the point of contact is

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

Solve: sec2theta=2/sqrt(3)

Solve sqrt(2) sec theta+tan theta=1 .

Solve sqrt(3) sec 2 theta=2 .

Prove that 1 + tan 2 theta tan theta = sec 2 theta .