Home
Class 12
MATHS
Equation of common tangent to the two hy...

Equation of common tangent to the two hyperbolas `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and (x^(2))/(a^(2))-(y^(2))/(b^(2))=1` is

Text Solution

Verified by Experts

The correct Answer is:
`y = pm xx pm sqrt(a^(2) - b^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equations to the common tangents to the two hyperbolas (x^2)/(a^2)-(y^2)/(b^2)=1 and (y^2)/(a^2)-(x^2)/(b^2)=1

The equations (s) to common tangent (s) to the two hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 " and " y^(2)/a^(2) - x^(2)/b^(2) = 1 is /are

The slopes of the common tangents of the hyperbolas (x^(2))/(9)-(y^(2))/(16)=1 and (y^(2))/(9)-(x^(2))/(16)=1 , are

Length of common tangents to the hyperbolas x^2/a^2-y^2/b^2=1 and y^2/a^2-x^2/b^2=1 is

Two conics (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and x^(2)=-(a)/(b)y intersect, if

If the tangents drawn from a point on the hyperbola x^(2)-y^(2)=a^(2)-b^(2) to ellipse (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 make angle alpha and beta with the transverse axis of the hyperbola, then

The equation of common tangent to the parabola y^2 =8x and hyperbola 3x^2 -y^2=3 is

Prove that the equation of tangent of the ellipse x^(2)/a^(2)+y^(2)/b^(2) = 1" at point "(x_(1),y_(1))" is (xx_(1))/a^(2) + (yy_(1))/b^(2)=1 .

Let F(x) = (1+b^(2))x^(2) + 2bx + 1 . The minimum value of F(x) is the reciprocal of the square of the eccentricity of the hyperbola (x^(2))/(16) + (y^(2))/(9) =1 . Then the equation of the common tangents to the curves (x^(2))/(16) + (y^(2))/(9//16)=1 and x^(2) + y^(2) = b^(2) is

If the tangent at point P(h, k) on the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 cuts the circle x^(2)+y^(2)=a^(2) at points Q(x_(1),y_(1)) and R(x_(2),y_(2)) , then the value of (1)/(y_(1))+(1)/(y_(2)) is