Home
Class 12
MATHS
Prove that cos^(2)theta + sec^(2)theta c...

Prove that `cos^(2)theta + sec^(2)theta` can never be less than 2 for all values of `theta in R-(2n+1)(pi)/(2) , n in I`.

A

`5/3`

B

`sqrt(5/3)`

C

`sqrt(34/9)`

D

`9/sqrt13`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sqrt((1-cos^(2)theta)sec^(2)theta)=tan theta

Prove that : sqrt((1-cos^(2)theta)sec^(2)theta)=tantheta

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

Prove that : sec theta + cos theta != 3/2

Prove that (sin^(2)theta+cos^(2)theta)/(sec^(2)theta-tan^(2)theta)=1

Prove that 1 + tan 2 theta tan theta = sec 2 theta .

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

Prove: cos e c^2theta+sec^2theta=cos e c^2thetasec^2theta

Prove that sec theta + tan theta = tan (pi/4 + theta/2)

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta