Home
Class 12
MATHS
Find the sum of infinite series s = si...

Find the sum of infinite series
`s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ((sqrt2 -1)/sqrt6) + sin ^(-1) ((sqrt3 - sqrt2)/(2sqrt3)) + ...+ sin^(-1) ((sqrtn - sqrt(n-1))/(sqrt(n(n+1))))+... infty`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

sin^(-1)(1/2)-2sin^(-1)(1/(sqrt(2)))

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

1. sin^(-1)((1)/(sqrt(2))) 2. cos^(-1)((sqrt(3))/(2))

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is

Find the value of : sin^(-1) (sqrt(3)/2)

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Evaluate : sin^-1 (- sqrt(3)/2)

The value of sin^-1 (sqrt(3)/2)+ sin^-1 (1/sqrt(2)) is equal to (A) sin^-1 ((sqrt(3+1))/(2sqrt(2))) (B) pi-sin^-1 ((sqrt(3+1))/(2sqrt(2))) (C) pi+sin^-1 ((sqrt(3+1))/(2sqrt(2))) (D) none of these