Home
Class 12
MATHS
Solve for x : If [ sin^(-1) cos^(-1) s...

Solve for x : If ` [ sin^(-1) cos^(-1) sin ^(-1) tan^(-1)x] = 1`, where [.] denotes the greatest integer function .

Promotional Banner

Similar Questions

Explore conceptually related problems

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is discontinous at

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0 , where [.] denotes the greatest integer function, is satisfied by

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the