Home
Class 12
MATHS
If -1lt x lt 0 then tan^(-1) x equals...

If `-1lt x lt 0` then `tan^(-1)` x equals

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x lt 0 then tan^(-1)(1/x) equals

If -1 lt x lt 0 , then cos^(-1) x is equal to

If -1< x < 0 , then cos^(-1)x is equal to (a) sec^(-1)(1/ x) (b) pi-sin^(-1)sqrt(1+x^2) (c) pi+tan^(-1)(x/(sqrt(1-x^2))) (d) cot^(-1)(x/(sqrt(1-x^2))) .

If x<0,t h e ntan^(-1)x is equal to

If 0 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If sec x cos 5x=-1 and 0 lt x lt (pi)/(4) , then x is equal to

Let f(x)=tan^(-1)x-x +(x^3)/6 Statement -1: f(x) lt g(x) for 0 lt x le 1 Statement -2: h(X)= tan^(-1) x-x +(x^3)/(6) decreases on [-1,1]

If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2))) equals

If f(x)={{:(x + 1, x gt 1),(0",", x=1 "then f'(0) equal to "),(7-3x"," , x lt 1):}