Home
Class 12
MATHS
Which of the following angles is greater...

Which of the following angles is greater ?
`theta_(1) = sin^(-1).(4)/(5) + sin^(-1).(1)/(3) and theta_(2) = cos^(-1).(4)/(5) + cos^(-1).(1)/(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Which of the following angles is greater? theta_1=sin^(-1)(4/5)+sin^(-1)(1/3)ortheta_2=cos^(-1)(4/5)+cos^(-1)(1/3)

(1)/( sec 2 theta) = cos ^(4) theta - sin ^(4) theta.

Find the principal values of the following : (i) sin^(-1)(sin.(5pi)/(3)) (ii) cos^(-1)cos((4pi)/(3)) (iii) cos [(pi)/(3) + cos^(-1) (-(1)/(2))]

Which of the following is/are a rational number? sin(tan^(-1)3+tan^(-1)(2/3)) cos(pi/2-sin^(-1)(3/4)) (log)_2("sin"(1/4)sin^(-1)(63/8)] tan(1/2cos^(-1)(sqrt(5)/3))

Prove that: sin^(-1)(-4/5)=tan^(-1)(-4/3)=cos^(-1)(-3/5)-pi

sin2theta+(1)/(3)sin^(3)2theta+(1)/(5)sin^(5)2theta+....=

If veca=(3,1) and vecb=(1,2) represent the sides of a parallelogram then the angle theta between the diagonals of the paralelogram is given by (A) theta=cos^-1(1/sqrt(5)) (B) theta=cos^-1(2/sqrt(5)) (C) theta=cos^-1 (1/(2sqrt(5))) (D) theta = pi/2

(1)/(sin theta)+(1)/(cos theta)=

If (1)/(2) sin^(-1) [(3 sin 2 theta)/(5 + 4 cos 2 theta)] = tan^(-1) x, " then " x =

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0