Home
Class 12
MATHS
The minimum value of 27^(cos2x).81^(sin2...

The minimum value of `27^(cos2x).81^(sin2x)` , is

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 27^(cos3x)81^(sin3x) is

Find the maximum & minimum values of 27^(cos2x). 81^(sin2x)

The Minimum value of 27^cosx +81^sinx is equal to

Column I Column II The value of ((4+sec20^0)/(cosec20^0))^2 , is p. 1 The minimum value of (1+cos2x+8sin^2x)/(2sin2x),x(0,pi/2) is q. 2 The value of (8sin40^0dotsin50^0dottan10^0)/(cos80^0) r. 3 If (cos5A)/(cosA)+(sin5A)/(sinA)=a+bcos4A , then (a^2)/b is s. 4

The minimum value of (a^(2))/(cos^(2)x)+(b^(2))/(sin^(2)x)

Find the minimum value of 2^("sin" x) + 2^("cos" x)

If 0ltxlt(pi)/(2) then the minimum value of (cos^(3)x)/(sinx)+(sin^(3))/(cosx)(x)/(x) , is

The minimum value of 2^((x^2-3)^3+27) is (a) 2^(27) (b) 2 (c) 1 (d) none of these

Find the minimum value of 4sin^(2)x+4cos^(2)x .

Find maximum and minimum values of 9cos^(2)x + 48 sinx cosx - 5 sin^(2)x - 2 .