Home
Class 12
MATHS
The number of values of theta in the int...

The number of values of `theta` in the interval `(-pi/2,pi/2)` satisfying the equation `(sqrt(3))^(sec^2theta)=tan^4theta+2tan^2theta` is 2 (b) 4 (c) 0 (d) 1

Text Solution

Verified by Experts

The correct Answer is:
`0=pm//4`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^tan2θ =0

tan(pi/4+theta)-tan(pi/4-theta)=2tan2theta

The number of values of theta in [0, 2pi] that satisfies the equation sin^(2)theta - cos theta = (1)/(4)

The number of values of theta in the interval [-pi/2,pi/2] and theta!=(npi)/5 is where n=0,+-1,+-2 and tantheta=cot(5theta) and sin(2theta)=cos(4theta) is

Prove that : sec^(4)theta-tan^(4)theta=1+2tan^(2)theta

The number of values of theta in [(-3pi)/(2), (4pi)/(3)] which satisfies the system of equations. 2 sin^(2) theta + sin ^(2) 2 theta = 2 and sin 2 theta + cos 2 theta = tan theta is

If the sum of all values of theta , 0 le theta le 2 pi satisfying the equation (8 cos 4 theta - 3) ( cot theta + tan theta -2 ) ( cot theta + tan theta + 2) = 12 is k pi , then k is equal to :

Prove the identity sec^4 theta - sec^2 theta = tan^4 theta + tan^2 theta

The sum of all values of theta in (0,pi/2) satisfying sin^(2)2theta+cos^(4)2theta=3/4 is