Home
Class 12
MATHS
Solve |sin3x+sinx|+|sin3x-sinx|=sqrt(3),...

Solve `|sin3x+sinx|+|sin3x-sinx|=sqrt(3), -pi/2 lt theta lt pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( | \sin(3x) + \sin(x) | + | \sin(3x) - \sin(x) | = \sqrt{3} \) for \( -\frac{\pi}{2} < x < \frac{\pi}{2} \), we can follow these steps: ### Step 1: Analyze the expression We start with the equation: \[ | \sin(3x) + \sin(x) | + | \sin(3x) - \sin(x) | = \sqrt{3} \] Recall that the absolute value function can be simplified depending on the signs of the expressions inside. ### Step 2: Use the sine addition formulas Using the sine addition formulas, we can express \( \sin(3x) \) in terms of \( \sin(x) \): \[ \sin(3x) = 3\sin(x) - 4\sin^3(x) \] This will help us rewrite the equation in terms of \( \sin(x) \). ### Step 3: Substitute and simplify Substituting \( \sin(3x) \) into the equation gives: \[ | (3\sin(x) - 4\sin^3(x)) + \sin(x) | + | (3\sin(x) - 4\sin^3(x)) - \sin(x) | = \sqrt{3} \] This simplifies to: \[ | 4\sin(x) - 4\sin^3(x) | + | 2\sin(x) - 4\sin^3(x) | = \sqrt{3} \] Factoring out common terms: \[ 4 | \sin(x)(1 - \sin^2(x)) | + | 2\sin(x) - 4\sin^3(x) | = \sqrt{3} \] ### Step 4: Analyze cases based on the signs Next, we need to analyze the cases based on the values of \( \sin(x) \): 1. **Case 1:** \( \sin(x) \geq 0 \) 2. **Case 2:** \( \sin(x) < 0 \) ### Step 5: Solve for \( \sin(x) \) For \( \sin(x) \geq 0 \): \[ 4\sin(x)(1 - \sin^2(x)) + 2\sin(x) - 4\sin^3(x) = \sqrt{3} \] This simplifies to: \[ 4\sin(x) - 4\sin^3(x) + 2\sin(x) - 4\sin^3(x) = \sqrt{3} \] Combining terms gives: \[ 6\sin(x) - 8\sin^3(x) = \sqrt{3} \] For \( \sin(x) < 0 \), the absolute values will change signs, and we will have: \[ -4\sin(x)(1 - \sin^2(x)) - (2\sin(x) - 4\sin^3(x)) = \sqrt{3} \] ### Step 6: Find specific values From the analysis, we can test specific angles where \( \sin(x) \) takes values that are easy to compute: - Test \( x = \frac{\pi}{3} \): \[ \sin\left(3 \cdot \frac{\pi}{3}\right) = \sin(\pi) = 0 \] \[ |0 + \frac{\sqrt{3}}{2}| + |0 - \frac{\sqrt{3}}{2}| = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3} \] Thus, \( x = \frac{\pi}{3} \) is a solution. - Test \( x = -\frac{\pi}{3} \): \[ \sin\left(3 \cdot -\frac{\pi}{3}\right) = \sin(-\pi) = 0 \] \[ |0 - \left(-\frac{\sqrt{3}}{2}\right)| + |0 + \left(-\frac{\sqrt{3}}{2}\right)| = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3} \] Thus, \( x = -\frac{\pi}{3} \) is also a solution. ### Final Solutions The solutions to the equation are: \[ x = \frac{\pi}{3}, -\frac{\pi}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

Solve for x , sin x = ( -sqrt3)/(2), (0 lt x lt 2pi).

Solve (2^(x)-1)(3^(x)-9)(sinx-cosx)(5^(x)-1)lt0, -pi//2 lt x lt 2pi .

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

Solve the equaiton : 2 sin x + sqrt(3) sinx=0

Solve sin7x+sin4x+sinx=0 and 0 lt xltpi/2

Solve the equation sqrt3 cos x + sin x =1 for - 2pi lt x le 2pi.

If sin theta =sqrt(3) cos theta, -pi lt theta lt 0 , then the value of theta is

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

int_(0)^(pi//2)sinx sin2x sin3x sin 4x dx=