Home
Class 12
MATHS
Find the number of solution(s) of the eq...

Find the number of solution(s) of the equation
`cos (pi sqrt(x)) cos (pi sqrt(x-4))=1`.

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

The -number of solutions of the equation cos(pisqrt(x-4)cos(pi sqrtx)=1 is

Find the number of solution of the equation 2x=3pi (1-cos x) .

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

Find the number of solution of the equation sqrt(cos 2x+2)=(sin x + cos x) in [0, pi] .

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of solutions of the equation |2 sin x-sqrt(3)|^(2 cos^(2) x-3 cos x+1)=1 in [0, pi] is

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

Find the number of solution of the equation 1+e^cot^(2x)=sqrt(2|sinx|-1)+(1-cos2x)/(1+sin^4x)forx in (0,5pi)dot