Home
Class 12
MATHS
The system has non trivial solution if ...

The system has non trivial solution if `|{:("sin"3theta,-1,1),("cos"2theta,4,3),(2,7,7):}|` =0 then `theta =`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \theta \) for which the determinant \[ D = \begin{vmatrix} \sin(3\theta) & -1 & 1 \\ \cos(2\theta) & 4 & 3 \\ 2 & 7 & 7 \end{vmatrix} \] is equal to zero. ### Step 1: Expand the Determinant We will expand the determinant using the first row. \[ D = \sin(3\theta) \begin{vmatrix} 4 & 3 \\ 7 & 7 \end{vmatrix} - (-1) \begin{vmatrix} \cos(2\theta) & 3 \\ 2 & 7 \end{vmatrix} + 1 \begin{vmatrix} \cos(2\theta) & 4 \\ 2 & 7 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 4 & 3 \\ 7 & 7 \end{vmatrix} = 4 \cdot 7 - 3 \cdot 7 = 28 - 21 = 7 \) 2. \( \begin{vmatrix} \cos(2\theta) & 3 \\ 2 & 7 \end{vmatrix} = \cos(2\theta) \cdot 7 - 3 \cdot 2 = 7\cos(2\theta) - 6 \) 3. \( \begin{vmatrix} \cos(2\theta) & 4 \\ 2 & 7 \end{vmatrix} = \cos(2\theta) \cdot 7 - 4 \cdot 2 = 7\cos(2\theta) - 8 \) Substituting these back into the determinant: \[ D = \sin(3\theta) \cdot 7 + (7\cos(2\theta) - 6) + (7\cos(2\theta) - 8) \] ### Step 2: Simplify the Expression Now, we simplify the expression: \[ D = 7\sin(3\theta) + 7\cos(2\theta) - 6 + 7\cos(2\theta) - 8 \] \[ D = 7\sin(3\theta) + 14\cos(2\theta) - 14 \] ### Step 3: Set the Determinant to Zero For the system to have a non-trivial solution, we set the determinant equal to zero: \[ 7\sin(3\theta) + 14\cos(2\theta) - 14 = 0 \] Dividing the entire equation by 7 gives: \[ \sin(3\theta) + 2\cos(2\theta) - 2 = 0 \] ### Step 4: Rearranging the Equation Rearranging gives us: \[ \sin(3\theta) + 2\cos(2\theta) = 2 \] ### Step 5: Use Trigonometric Identities Using the trigonometric identity for \( \cos(2\theta) \): \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] Substituting this into the equation: \[ \sin(3\theta) + 2(1 - 2\sin^2(\theta)) = 2 \] \[ \sin(3\theta) + 2 - 4\sin^2(\theta) = 2 \] This simplifies to: \[ \sin(3\theta) - 4\sin^2(\theta) = 0 \] ### Step 6: Factor the Equation Factoring gives us: \[ \sin(3\theta) = 4\sin^2(\theta) \] ### Step 7: Use the Identity for \( \sin(3\theta) \) Using the identity \( \sin(3\theta) = 3\sin(\theta) - 4\sin^3(\theta) \): \[ 3\sin(\theta) - 4\sin^3(\theta) = 4\sin^2(\theta) \] Rearranging gives: \[ 4\sin^3(\theta) - 4\sin^2(\theta) - 3\sin(\theta) = 0 \] ### Step 8: Factor Out \( \sin(\theta) \) Factoring out \( \sin(\theta) \): \[ \sin(\theta)(4\sin^2(\theta) - 4\sin(\theta) - 3) = 0 \] ### Step 9: Solve for \( \sin(\theta) \) Setting \( \sin(\theta) = 0 \) gives: \[ \theta = n\pi \] For the quadratic \( 4\sin^2(\theta) - 4\sin(\theta) - 3 = 0 \), we can use the quadratic formula: \[ \sin(\theta) = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4} \] \[ = \frac{4 \pm \sqrt{16 + 48}}{8} \] \[ = \frac{4 \pm \sqrt{64}}{8} \] \[ = \frac{4 \pm 8}{8} \] This gives: 1. \( \sin(\theta) = \frac{12}{8} = \frac{3}{2} \) (not possible since \( \sin(\theta) \) must be in \([-1, 1]\)) 2. \( \sin(\theta) = \frac{-4}{8} = -\frac{1}{2} \) ### Step 10: Find \( \theta \) Values From \( \sin(\theta) = -\frac{1}{2} \): \[ \theta = \frac{7\pi}{6} + 2n\pi \quad \text{and} \quad \theta = \frac{11\pi}{6} + 2n\pi \] ### Final Answer Thus, the values of \( \theta \) are: \[ \theta = n\pi \quad \text{and} \quad \theta = \frac{7\pi}{6} + 2n\pi, \quad \frac{11\pi}{6} + 2n\pi \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If |(cos theta,-1,1),(cos2 theta,4,3),(2,7,7)|=0 , then the number of values of theta in [0, 1pi] is

The solution set of sin 3theta + cos 2theta = 0 iss

Consider the system linear equations in x ,y ,a n dz given by (sin3theta)x-y+z=0,(cos2theta)x+4y+3z=0,2x+7y+7z=0. the value of theta for which the system has a non-trivial solution : (A) theta = npi/2 (B) theta = (2n+1)pi/6 (C) theta = npi or npi + (-1)^n pi/6 (D) none of these

If (3sin2theta)/(1-cos2theta)=1/2 and 0^(@)letheta180^(@) , then theta =

Find the value of theta if |[1,1,sin 3theta] , [-4,3,cos 2theta] , [7, -7, -2]|=0

Consider the system of linear equations in x , ya n dz : ""(sin3theta)x-y+z=0 , (cos2theta)x+4y+3z=0 , 2x+7y+7z=0 Which of the following can be the value of theta for which the system has a non-trivial solution (A) npi+(-1)^npi/6,AAn in Z (B) npi+(-1)^npi/3,AAn in Z (C) npi+(-1)^npi/9,AAn in Z (D)none of these

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

Consider the system of linear equations in x, y, and z: (sin 3 theta) x-y+z=0 (cos 2 theta) x+4y+3z=0 2x+7y+7z=0 Which of the following can be the values of theta for which the system has a non-trivial solution ?

Number of values of theta lying I [0,100 pi ] for which the system of equations (sin 3 theta ) x-y+z=0, (cos 2 theta ) x+4y +3z=0, 2x+ 7y+7z =0 has non-trivial solution is "____"

The solution set of the equation 4 "sin" theta "cos" theta- 2 "cos" theta -2sqrt(3) "sin" theta + sqrt(3) =0 " in the interval" (0, 2 pi) , is