Home
Class 12
MATHS
The number of solutions of the equation ...

The number of solutions of the equation `cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x` is 0 (b) 1 (c) 2 (d) 3

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

Find the number of real solutions of the equation sin^(-1)(e^(x))+cos^(-1)(x^(2))=pi//2 .

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

Total number of solution of the equation cos^(-1)((1-x^2)/(1+x^2))=sin^(-1)x is/are one (b) two (c) three (d) four

The number of roots of the equation sin^(-1)x-(1)/(sin^(-1)x)=cos^(-1)x-(1)/(cos^(-1)x) is (a) 0 (b) 1 (c) 2 (d) 3

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of solution of the equation 2sin^(-1)((2x)/(1+x^(2)))-pi x^(3)=0 is equal to

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2