Home
Class 12
MATHS
If -1lexle0 then sin^(-1)x equals...

If `-1lexle0` then `sin^(-1)x` equals

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Similar Questions

Explore conceptually related problems

If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))/(1+x^(2)))} is equal to

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

If x in [-1,1] then sin^(-1)((2x)/(1+x^(2))) equals

Satement-1: if 1/2lexle1 then cos^(-1)x+cos^(-1){x/2+sqrt(3-3x^(2))/(2)} is equal to (pi)/(5) Statement-2: sin^(-1)(2xsqrt(1-x^(2))=2sin^(-1)x if x in -(1)sqrt(2),(1)sqrt(2))

lim _( x to 0) (e ^(sin (x ))-1)/(x ) equals to :

"sin"("tan"^(-1)x) is equal to :

If |x| le 1 , then 2tan^(-1)x + sin^(-1)((2x)/(1+x^(2))) is equal to

Statement 1. cos^-1 x-sin^-1 (x/2+sqrt((3-3x^2))/2)=- pi/3, where 1/2 lexle1 , Statement 2. 2sin^-1 x=sin^-1 2x sqrt(1-x^2), where - 1/sqrt(2)lexle1/sqrt(2). (A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Statement 2 is true

If sqrt3 sin x+cosx-2=(y-1)^(2)" for "0lexle 8pi , then the number of values of the pair (x, y) is equal to