Home
Class 12
MATHS
Find all value of theta in the interval ...

Find all value of `theta` in the interval `(-pi/2, pi/2)` satifying the equation `(1-tan theta) (1+tan theta) sec^(2) theta+2^(tan^(2) theta) =0`.

A

`sqrt(2)-1`

B

`1-sqrt(2)`

C

`pi//4`

D

`3pi//4`

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Similar Questions

Explore conceptually related problems

Find all values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^(tan^2theta)=0

Find the values of theta in the interval (-pi/2,pi/2) satisfying the equation (1-tantheta)(1+tantheta)sec^2theta+2^tan2θ =0

Prove that sec^(2)theta-1-tan^(2)theta=0

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

The number of values of theta in the interval (-pi/2,pi/2) satisfying the equation (sqrt(3))^(sec^2theta)=tan^4theta+2tan^2theta is 2 (b) 4 (c) 0 (d) 1

Prove that 1 + tan 2 theta tan theta = sec 2 theta .

1/(sec(theta)-tan(theta))+1/(sec(theta)+tan(theta)) =

If the sum of all values of theta , 0 le theta le 2 pi satisfying the equation (8 cos 4 theta - 3) ( cot theta + tan theta -2 ) ( cot theta + tan theta + 2) = 12 is k pi , then k is equal to :

If sec theta+tan theta=(1)/(2) The value of tan theta =

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1