Home
Class 12
MATHS
If 4 sin^(2) x-8sin x+ 3 le 0,0le x le 2...

If `4 sin^(2) x-8sin x+ 3 le 0,0le x le 2pi` then the solution set for x is

A

`(0,pi)`

B

`(0,(pi)/(4))`

C

`((pi)/(4),pi)`

D

`((pi)/(6),(5pi)/(6))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(4 \sin^2 x - 8 \sin x + 3 \leq 0\) for \(0 \leq x \leq 2\pi\), we will follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ 4 \sin^2 x - 8 \sin x + 3 \leq 0 \] ### Step 2: Factor the quadratic expression This is a quadratic inequality in terms of \(\sin x\). We can factor it: \[ 4 \sin^2 x - 8 \sin x + 3 = (2 \sin x - 3)(2 \sin x - 1) \] Thus, we rewrite the inequality as: \[ (2 \sin x - 3)(2 \sin x - 1) \leq 0 \] ### Step 3: Find the critical points To find the critical points, we set each factor to zero: 1. \(2 \sin x - 3 = 0 \Rightarrow \sin x = \frac{3}{2}\) (not possible since \(\sin x\) cannot exceed 1) 2. \(2 \sin x - 1 = 0 \Rightarrow \sin x = \frac{1}{2}\) The only valid critical point is \(\sin x = \frac{1}{2}\). ### Step 4: Determine the intervals Next, we analyze the sign of the product \((2 \sin x - 3)(2 \sin x - 1)\) in the intervals determined by the critical points. The relevant intervals are: - \((-\infty, \frac{1}{2})\) - \((\frac{1}{2}, \infty)\) ### Step 5: Test intervals 1. For \(\sin x < \frac{1}{2}\) (e.g., \(\sin x = 0\)): \((2 \cdot 0 - 3)(2 \cdot 0 - 1) = (-3)(-1) > 0\) (positive) 2. For \(\sin x = \frac{1}{2}\): \((2 \cdot \frac{1}{2} - 3)(2 \cdot \frac{1}{2} - 1) = (1 - 3)(1 - 1) = (-2)(0) = 0\) (zero) 3. For \(\sin x > \frac{1}{2}\) (e.g., \(\sin x = 1\)): \((2 \cdot 1 - 3)(2 \cdot 1 - 1) = (2 - 3)(2 - 1) = (-1)(1) < 0\) (negative) ### Step 6: Combine the results The inequality \((2 \sin x - 3)(2 \sin x - 1) \leq 0\) holds in the interval: \[ \frac{1}{2} \leq \sin x \leq 1 \] ### Step 7: Find the angles corresponding to \(\sin x = \frac{1}{2}\) and \(\sin x = 1\) - \(\sin x = \frac{1}{2}\) gives \(x = \frac{\pi}{6}, \frac{5\pi}{6}\) - \(\sin x = 1\) gives \(x = \frac{\pi}{2}\) ### Step 8: Write the solution set Thus, the solution set for \(x\) in the interval \(0 \leq x \leq 2\pi\) is: \[ x \in \left[\frac{\pi}{6}, \frac{5\pi}{6}\right] \cup \left[\frac{\pi}{2}, \frac{\pi}{2}\right] \] ### Final Solution The final solution set for \(x\) is: \[ \left[\frac{\pi}{6}, \frac{5\pi}{6}\right] \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 le x le pi/2 then

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

If 2"sin" x -1 le 0 "and "x in [0, 2 pi] , then the solution set for x, is

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

If sin^4x + cos^4y + 2 = 4 sin x.cos y and 0 le x, y le pi/2 then sin x + cos y is equal to

If a. 3^(tanx) + a. 3^(-tanx) - 2 = 0 has real solutions, x != pi/2 , 0 le x le pi, then find the set of all possible values of parameter 'a'.

The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y le 2pi , o le z le 2pi , has