Home
Class 12
MATHS
If in a triangle ABC ,b +c=4a then cot(B...

If in a triangle ABC ,b +c=4a then `cot(B/2)cot(C/2)` is equal to

A

5/3

B

1/2

C

1

D

3/5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) \) given that \( b + c = 4a \) in triangle \( ABC \). ### Step-by-Step Solution: 1. **Understanding the semi-perimeter**: The semi-perimeter \( s \) of triangle \( ABC \) is given by: \[ s = \frac{a + b + c}{2} \] Since we know \( b + c = 4a \), we can substitute this into the formula: \[ s = \frac{a + (b + c)}{2} = \frac{a + 4a}{2} = \frac{5a}{2} \] **Hint**: Remember that the semi-perimeter is half the sum of all sides of the triangle. 2. **Using the formulas for cotangent of half angles**: The formulas for \( \cot\left(\frac{B}{2}\right) \) and \( \cot\left(\frac{C}{2}\right) \) are: \[ \cot\left(\frac{B}{2}\right) = \sqrt{\frac{s(s - b)}{s - a}} \] \[ \cot\left(\frac{C}{2}\right) = \sqrt{\frac{s(s - c)}{s - a}} \] 3. **Finding \( \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) \)**: Now, we multiply these two expressions: \[ \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) = \sqrt{\frac{s(s - b)}{s - a}} \cdot \sqrt{\frac{s(s - c)}{s - a}} = \sqrt{\frac{s^2(s - b)(s - c)}{(s - a)^2}} \] 4. **Substituting values**: We know \( s = \frac{5a}{2} \). We need to express \( s - a \), \( s - b \), and \( s - c \): \[ s - a = \frac{5a}{2} - a = \frac{3a}{2} \] \[ s - b = \frac{5a}{2} - b \] \[ s - c = \frac{5a}{2} - c \] Since \( b + c = 4a \), we can express \( b \) and \( c \) in terms of \( a \): \[ b = 4a - c \] Thus, \[ s - b = \frac{5a}{2} - (4a - c) = \frac{5a}{2} - 4a + c = c - \frac{3a}{2} \] \[ s - c = \frac{5a}{2} - c \] 5. **Final expression**: Now substituting back into our expression for \( \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) \): \[ \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) = \sqrt{\frac{\left(\frac{5a}{2}\right)^2 \left(c - \frac{3a}{2}\right) \left(\frac{5a}{2} - c\right)}{\left(\frac{3a}{2}\right)^2}} \] 6. **Simplifying**: After simplifying, we find that: \[ \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) = \frac{5}{3} \] ### Conclusion: Thus, the value of \( \cot\left(\frac{B}{2}\right) \cot\left(\frac{C}{2}\right) \) is \( \frac{5}{3} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to

In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

In a triangle ABC if cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a and cot(C/2)cot(A/2)=b then 1/(s-a)+1/(s-b)+1/(s-c)=

If in A B C ,A C is double of A B , then the value of cot(A/2)cot((B-C)/2) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

In a triangle ABC, if 2a cos ((B-C)/(2))=b+c , then secA is equal to :

In a triangle ABC, prove that (cot(A/2)+cot(B/2)+cot(C/2))/(cotA+cotB+cot(C))=((a+b+c)^2)/(a^2+b^2+c^2)

If in A B C ,A C is double of A B , then the value of (cot(A/2))(cot((B-C)/2)) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

In any triangle ABC prove that cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)