Home
Class 12
MATHS
If acos x + cot x +1=cosec x then the p...

If acos x + cot x +1=cosec x then the possible values of x can be

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a \cos x + \cot x + 1 = \csc x \), we will follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ a \cos x + \cot x + 1 = \csc x \] We can express \(\cot x\) and \(\csc x\) in terms of sine and cosine: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \csc x = \frac{1}{\sin x} \] Substituting these into the equation gives: \[ a \cos x + \frac{\cos x}{\sin x} + 1 = \frac{1}{\sin x} \] ### Step 2: Clear the fractions Multiply through by \(\sin x\) to eliminate the denominators: \[ a \cos x \sin x + \cos x + \sin x = 1 \] ### Step 3: Rearrange the equation Rearranging the equation gives: \[ a \cos x \sin x + \cos x + \sin x - 1 = 0 \] ### Step 4: Group terms We can group the terms: \[ \cos x (a \sin x + 1) + \sin x - 1 = 0 \] ### Step 5: Isolate terms Now isolate \(\sin x\): \[ \sin x (1 - a \cos x) = -\cos x \] ### Step 6: Analyze the equation This equation can have solutions based on the values of \(\sin x\) and \(\cos x\). We can set: \[ \sin x = 0 \quad \text{or} \quad 1 - a \cos x = 0 \] ### Step 7: Solve for \(\sin x = 0\) If \(\sin x = 0\), then: \[ x = n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 8: Solve for \(1 - a \cos x = 0\) If \(1 - a \cos x = 0\), then: \[ \cos x = \frac{1}{a} \] This gives: \[ x = \cos^{-1}\left(\frac{1}{a}\right) \quad \text{and} \quad x = -\cos^{-1}\left(\frac{1}{a}\right) + 2n\pi \quad \text{for } n \in \mathbb{Z} \] ### Step 9: Conclusion The possible values of \(x\) are: \[ x = n\pi \quad \text{and} \quad x = \cos^{-1}\left(\frac{1}{a}\right) + 2n\pi \quad \text{or} \quad x = -\cos^{-1}\left(\frac{1}{a}\right) + 2n\pi \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If |x + 1| = |3x - 2| what are the possible values of x?

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is

The expression (1 + tan x + tan^2 x)(1-cot x + cot^2 x) has the positive values for x, given by

If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

int cot^6x cosec^2xdx

If (x-1)(x-3)=-1 , what is a possible value of x?

If cos 3x= 0 and x is acute find the value of : cot^(2) x- cosec ^(2)x

If tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=1+sqrt((2x)/(1+x^(2))) where x, y in R , then find the least possible value of y.

If |cot x+ cosec x|=|cot x|+ |cosec x|, x in [0,2pi], then complete set of values of x is :

If cos x=3/5 and x lies in the fourth quadrant find the values of cosec x+ cot x .