Home
Class 12
MATHS
If sin(pi cos theta)=cos(pi sin theta),...

If `sin(pi cos theta)=cos(pi sin theta)`, then `sin 2theta=`

A

x may be a multiple of `pi`

B

x can not be an even multiple of `pi`

C

z can be a multiple of `pi`

D

y can be a multiple of `pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin(\pi \cos \theta) = \cos(\pi \sin \theta) \), we will follow these steps: ### Step 1: Rewrite the Cosine Function We know that \( \cos\left(\frac{\pi}{2} - x\right) = \sin(x) \). Thus, we can rewrite the right-hand side of the equation: \[ \cos(\pi \sin \theta) = \sin\left(\frac{\pi}{2} - \pi \sin \theta\right) \] So, we can rewrite the equation as: \[ \sin(\pi \cos \theta) = \sin\left(\frac{\pi}{2} - \pi \sin \theta\right) \] ### Step 2: Set Up the Equation Since the sine function is periodic, we can set up the following equations: \[ \pi \cos \theta = \frac{\pi}{2} - \pi \sin \theta + 2n\pi \quad \text{or} \quad \pi \cos \theta = \pi - \left(\frac{\pi}{2} - \pi \sin \theta\right) + 2n\pi \] where \( n \) is any integer. ### Step 3: Solve the First Equation From the first equation: \[ \pi \cos \theta + \pi \sin \theta = \frac{\pi}{2} + 2n\pi \] Dividing through by \( \pi \): \[ \cos \theta + \sin \theta = \frac{1}{2} + 2n \] ### Step 4: Solve the Second Equation From the second equation: \[ \pi \cos \theta + \pi \sin \theta = \frac{3\pi}{2} + 2n\pi \] Dividing through by \( \pi \): \[ \cos \theta + \sin \theta = \frac{3}{2} + 2n \] ### Step 5: Analyze the Possible Cases Now we will analyze both cases: 1. **Case 1**: \( \cos \theta + \sin \theta = \frac{1}{2} + 2n \) 2. **Case 2**: \( \cos \theta + \sin \theta = \frac{3}{2} + 2n \) ### Step 6: Square Both Sides For both cases, we can square both sides to eliminate the sine and cosine terms: \[ (\cos \theta + \sin \theta)^2 = \left(\frac{1}{2} + 2n\right)^2 \quad \text{and} \quad (\cos \theta + \sin \theta)^2 = \left(\frac{3}{2} + 2n\right)^2 \] Using the identity \( \cos^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta = 1 + \sin 2\theta \): \[ 1 + \sin 2\theta = \left(\frac{1}{2} + 2n\right)^2 \quad \text{and} \quad 1 + \sin 2\theta = \left(\frac{3}{2} + 2n\right)^2 \] ### Step 7: Solve for \( \sin 2\theta \) From the first case: \[ 1 + \sin 2\theta = \frac{1}{4} + 2n + 2n^2 \] Thus, \[ \sin 2\theta = \frac{1}{4} - 1 + 2n + 2n^2 = 2n + 2n^2 - \frac{3}{4} \] From the second case: \[ 1 + \sin 2\theta = \frac{9}{4} + 3n + 2n^2 \] Thus, \[ \sin 2\theta = 3n + 2n^2 - \frac{1}{4} \] ### Step 8: Conclusion By solving both cases, we find that: \[ \sin 2\theta = \pm \frac{3}{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin (picot theta)=cos (pi tantheta), then

If tan( pi cos theta) = cot ( pi sin theta) then sin (theta + pi/4) equals

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi//4) is equal to

If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo the following is correct?

If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 theta is equal to

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is