If `sin(pi cos theta)=cos(pi sin theta)`, then `sin 2theta=`
If `sin(pi cos theta)=cos(pi sin theta)`, then `sin 2theta=`
A
x may be a multiple of `pi`
B
x can not be an even multiple of `pi`
C
z can be a multiple of `pi`
D
y can be a multiple of `pi//2`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the equation \( \sin(\pi \cos \theta) = \cos(\pi \sin \theta) \), we will follow these steps:
### Step 1: Rewrite the Cosine Function
We know that \( \cos\left(\frac{\pi}{2} - x\right) = \sin(x) \). Thus, we can rewrite the right-hand side of the equation:
\[
\cos(\pi \sin \theta) = \sin\left(\frac{\pi}{2} - \pi \sin \theta\right)
\]
So, we can rewrite the equation as:
\[
\sin(\pi \cos \theta) = \sin\left(\frac{\pi}{2} - \pi \sin \theta\right)
\]
### Step 2: Set Up the Equation
Since the sine function is periodic, we can set up the following equations:
\[
\pi \cos \theta = \frac{\pi}{2} - \pi \sin \theta + 2n\pi \quad \text{or} \quad \pi \cos \theta = \pi - \left(\frac{\pi}{2} - \pi \sin \theta\right) + 2n\pi
\]
where \( n \) is any integer.
### Step 3: Solve the First Equation
From the first equation:
\[
\pi \cos \theta + \pi \sin \theta = \frac{\pi}{2} + 2n\pi
\]
Dividing through by \( \pi \):
\[
\cos \theta + \sin \theta = \frac{1}{2} + 2n
\]
### Step 4: Solve the Second Equation
From the second equation:
\[
\pi \cos \theta + \pi \sin \theta = \frac{3\pi}{2} + 2n\pi
\]
Dividing through by \( \pi \):
\[
\cos \theta + \sin \theta = \frac{3}{2} + 2n
\]
### Step 5: Analyze the Possible Cases
Now we will analyze both cases:
1. **Case 1**: \( \cos \theta + \sin \theta = \frac{1}{2} + 2n \)
2. **Case 2**: \( \cos \theta + \sin \theta = \frac{3}{2} + 2n \)
### Step 6: Square Both Sides
For both cases, we can square both sides to eliminate the sine and cosine terms:
\[
(\cos \theta + \sin \theta)^2 = \left(\frac{1}{2} + 2n\right)^2 \quad \text{and} \quad (\cos \theta + \sin \theta)^2 = \left(\frac{3}{2} + 2n\right)^2
\]
Using the identity \( \cos^2 \theta + \sin^2 \theta + 2\sin \theta \cos \theta = 1 + \sin 2\theta \):
\[
1 + \sin 2\theta = \left(\frac{1}{2} + 2n\right)^2 \quad \text{and} \quad 1 + \sin 2\theta = \left(\frac{3}{2} + 2n\right)^2
\]
### Step 7: Solve for \( \sin 2\theta \)
From the first case:
\[
1 + \sin 2\theta = \frac{1}{4} + 2n + 2n^2
\]
Thus,
\[
\sin 2\theta = \frac{1}{4} - 1 + 2n + 2n^2 = 2n + 2n^2 - \frac{3}{4}
\]
From the second case:
\[
1 + \sin 2\theta = \frac{9}{4} + 3n + 2n^2
\]
Thus,
\[
\sin 2\theta = 3n + 2n^2 - \frac{1}{4}
\]
### Step 8: Conclusion
By solving both cases, we find that:
\[
\sin 2\theta = \pm \frac{3}{4}
\]
Similar Questions
Explore conceptually related problems
If sin (picot theta)=cos (pi tantheta), then
If tan( pi cos theta) = cot ( pi sin theta) then sin (theta + pi/4) equals
If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is
If tan(pi cos theta )= cot (pi sin theta ) ,then cos^(2)(theta -pi//4) is equal to
If "sin" (pi "cos" theta) = "cos" (pi "sin" theta), then which one fo the following is correct?
If "sin" (pi "cot" theta) = "cos" (pi "tan" theta), "then cosec" 2 theta is equal to
If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is
To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of tan^(2)""(pi)/(7)tan ^(2)""(2pi)/(7) tan ^(2)""(3pi)/(7) is
Recommended Questions
- If sin(pi cos theta)=cos(pi sin theta), then sin 2theta=
Text Solution
|
- If sin (pi cos theta) = cos (pi sin theta). Find sin (2 theta)
Text Solution
|
- If sin(pi cos theta)=cos(pi sin theta), then of the value cos(theta+-(...
Text Solution
|
- If sin(pi cos theta)=cos(pi sin theta), then show that theta=+-(1)/(2)...
Text Solution
|
- If |[1+sin^2theta, cos^2 theta,4sin 2theta] , [sin^2theta, 1+cos^2thet...
Text Solution
|
- यदि sin (pi cos theta) = cos (pi sin theta), तो सिद्ध कीजिए कि the...
Text Solution
|
- If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos ...
Text Solution
|
- If sin ( pi cos theta ) = cos (pi sin theta ), , then sho...
Text Solution
|
- If sin (pi cos theta)=cos (pi sin theta), then the vlaue of cos (thet...
Text Solution
|