Home
Class 12
MATHS
The complete solution set of the inequal...

The complete solution set of the inequality `[cot^(-)x]^(2)-6[cot^(-1)x]+le0`, where [.] denotes greatest integer function is

A

`|(a)/(2) sin b|lt 1`

B

`|(a)/(2) sin b|le 1`

C

`|a sin b|le 1`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]+9leq0 where [ ] denotes greatest integer function, is

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0 , where [.] denotes the greatest integer function, is satisfied by

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If [x]^(2)-3[x]+2=0 where [*] denotes the greatest integer function, then

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

Complete solution set of [cot^(-1)x]+2[tan^(-1)x]=0, where [] denotes the greatest integer function, is equal to (a) (0,cot1) (b) (0,tan1) (tan1,oo) (d) (cot1,tan1)