Home
Class 12
MATHS
Show that points with p.v bar(a)-2bar(b)...

Show that points with p.v `bar(a)-2bar(b)+3bar(c ),-2bar(a)+3bar(b)-bar(c ),4bar(a)-7bar(b)+7bar(c )` are collinear. It is given that vectors `bara,barb,bar c` are non-coplanar.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

(bar(a)*bar(i))^(2)+(bar(a)*bar(j))^(2)+(bar(a)*bar(k))^(2)=

Evaluate 3.bar(2)-0.bar(16)

Evaluate : 2.bar(5)-0.bar(35)

Evaluate : 2.bar(7)+1.bar(3)

In a regular hexagon ABCDEF, bar(AB) + bar(AC)+bar(AD)+ bar(AE) + bar(AF)=k bar(AD) then k is equal to

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

If the midpoint of the sides bar(BC), bar(CA), bar(AB) of DeltaABC are (3, -3), (3, -1), (1, 1) respectively then the vertices A, B, C are

In the Boolean algebra bar(A).bar(B) equals

Simplify : a - [a - bar(b + a) - {a - (a - bar(b-a))}]

The resultant of the three vectors bar(OA),bar(OB) and bar(OC) shown in figure :-