Home
Class 12
MATHS
If veca,vecb,vecc,vecd are four distinct...

If `veca,vecb,vecc,vecd` are four distinct vectors satisfying the conditions `vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxd` then prove that `veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vecd) is parallel to (vecb-vecc) .

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(veccxxvecd)=1 and veca.vecc=1/2, then

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb).(veccxxvecd)=1 and veca.vecc=1/2 then (A) veca,vecb,vecc are non coplanar (B) vecb,vecc, vecd are non coplanar (C) vecb, vecd are non paralel (D) veca, vecd are paralel and vecb, vecc are parallel

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2 , vecc.vecd=1/2 and angle between veca xx vecb and vecc xx vecd is pi/6 then the value of |[veca \ vecb \ vecd]vecc-[veca \ vecb \ vecc]vecd|=