Home
Class 12
MATHS
If veca, vecb and vecc are non -coplanar...

If `veca, vecb and vecc` are non -coplanar unit vectors such that `vecaxx(vecbxxvecc)=(vecbxxvecc)/sqrt2,vecb and vecc` are non- parallel , then prove that the angle between `veca and vecb "is" 3pi//4`

Promotional Banner

Similar Questions

Explore conceptually related problems

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

If veca,vecb,vecc are 3 unit vectors such that vecaxx(vecbxxvecc)=vecb/2 then ( vecb and vecc being non parallel). (a)angle between veca & vecb is pi/3 (b)angle between veca and vecc is pi/3 (c)angle between veca and vecb is pi/2 (d)angle between veca and vecc is pi/2

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecb and vecc are non coplanar and unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt2 then the angle between veca and vecb is (A) (3pi)/4 (B) pi/4 (C) pi/2 (D) pi

If veca,vecb and vecc are non coplanar and unit vectors such that vecaxx(vecbxxvecc)=(vecb+vecc)/sqrt2) then the angle between vea and vecb is (A) (3pi)/4 (B) pi/4 (C) pi/2 (D) pi

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

If veca,vecb,vecc are coplanar then show that vecaxxvecb, vecbxxvecc and veccxxveca are also coplanar.