Home
Class 12
MATHS
IF veca,vecb,vecc are three vectors such...

IF `veca,vecb,vecc` are three vectors such that each is inclined at an angle `pi/3` with the other two and `|veca|=1,|vecb|=2,|vecc|=3` then the scalar product of the vectors `2veca+3vecb-5vecc and 4veca-6vecb+10vecc` is equal to

A

-334

B

188

C

-522

D

-514

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar product of the vectors \( \vec{u} = 2\vec{a} + 3\vec{b} - 5\vec{c} \) and \( \vec{v} = 4\vec{a} - 6\vec{b} + 10\vec{c} \). ### Step 1: Write the scalar product The scalar product (dot product) of the vectors \( \vec{u} \) and \( \vec{v} \) can be expressed as: \[ \vec{u} \cdot \vec{v} = (2\vec{a} + 3\vec{b} - 5\vec{c}) \cdot (4\vec{a} - 6\vec{b} + 10\vec{c}) \] ### Step 2: Expand the dot product Using the distributive property of dot product, we expand: \[ \vec{u} \cdot \vec{v} = 2\vec{a} \cdot 4\vec{a} + 2\vec{a} \cdot (-6\vec{b}) + 2\vec{a} \cdot 10\vec{c} + 3\vec{b} \cdot 4\vec{a} + 3\vec{b} \cdot (-6\vec{b}) + 3\vec{b} \cdot 10\vec{c} - 5\vec{c} \cdot 4\vec{a} - 5\vec{c} \cdot (-6\vec{b}) - 5\vec{c} \cdot 10\vec{c} \] ### Step 3: Simplify the terms Calculating each term: 1. \( 2\vec{a} \cdot 4\vec{a} = 8|\vec{a}|^2 \) 2. \( 2\vec{a} \cdot (-6\vec{b}) = -12\vec{a} \cdot \vec{b} \) 3. \( 2\vec{a} \cdot 10\vec{c} = 20\vec{a} \cdot \vec{c} \) 4. \( 3\vec{b} \cdot 4\vec{a} = 12\vec{b} \cdot \vec{a} \) 5. \( 3\vec{b} \cdot (-6\vec{b}) = -18|\vec{b}|^2 \) 6. \( 3\vec{b} \cdot 10\vec{c} = 30\vec{b} \cdot \vec{c} \) 7. \( -5\vec{c} \cdot 4\vec{a} = -20\vec{c} \cdot \vec{a} \) 8. \( -5\vec{c} \cdot (-6\vec{b}) = 30\vec{c} \cdot \vec{b} \) 9. \( -5\vec{c} \cdot 10\vec{c} = -50|\vec{c}|^2 \) Combining these, we get: \[ \vec{u} \cdot \vec{v} = 8|\vec{a}|^2 + (-12 + 12)\vec{a} \cdot \vec{b} + (20 - 20)\vec{a} \cdot \vec{c} - 18|\vec{b}|^2 + 60\vec{b} \cdot \vec{c} - 50|\vec{c}|^2 \] ### Step 4: Substitute the magnitudes and angles Given: - \( |\vec{a}| = 1 \) - \( |\vec{b}| = 2 \) - \( |\vec{c}| = 3 \) - The angle between each pair of vectors is \( \frac{\pi}{3} \), so \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \). Calculating the dot products: - \( \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\left(\frac{\pi}{3}\right) = 1 \cdot 2 \cdot \frac{1}{2} = 1 \) - \( \vec{a} \cdot \vec{c} = |\vec{a}| |\vec{c}| \cos\left(\frac{\pi}{3}\right) = 1 \cdot 3 \cdot \frac{1}{2} = \frac{3}{2} \) - \( \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos\left(\frac{\pi}{3}\right) = 2 \cdot 3 \cdot \frac{1}{2} = 3 \) ### Step 5: Substitute these values into the equation Now substituting back into the equation: \[ \vec{u} \cdot \vec{v} = 8(1^2) - 18(2^2) + 60(3) - 50(3^2) \] Calculating: \[ = 8 - 18(4) + 180 - 50(9) \] \[ = 8 - 72 + 180 - 450 \] \[ = 8 - 72 + 180 - 450 = -334 \] ### Final Answer Thus, the scalar product of the vectors \( \vec{u} \) and \( \vec{v} \) is: \[ \boxed{-334} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

The scalar triple product [(veca+vecb-vecc,vecb+vecc-veca,vecc+veca-vecb)] is equal to

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

Let vec a, vec b, vec c are three vectors such that veca .veca=vecb . vecb = vecc . vecc = 3 and |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=27, then

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is