Home
Class 12
MATHS
bara times (barb times barc) +barb times...

`bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb)` equals

A

`3[bara barb barc]`

B

`2[bara barb barc]`

C

`[bara barb barc]`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) \), we will use the vector triple product identity, which states that: \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z} \] ### Step 1: Apply the vector triple product identity We will apply this identity to each term in the expression. 1. For \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \): \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] 2. For \( \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) \): \[ \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) = (\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \] 3. For \( \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) \): \[ \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{c} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b} \] ### Step 2: Combine all the results Now, we can combine all these results together: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) \] Substituting the expressions we found: \[ = \left[(\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}\right] + \left[(\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a}\right] + \left[(\mathbf{c} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b}\right] \] ### Step 3: Simplify the expression Now, we will group the terms: \[ = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{c} \cdot \mathbf{a}) \mathbf{b} + (\mathbf{b} \cdot \mathbf{a}) \mathbf{c} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} + (\mathbf{c} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \] Notice that: - The terms \( (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} \) and \( -(\mathbf{c} \cdot \mathbf{a}) \mathbf{b} \) cancel out. - The terms \( (\mathbf{b} \cdot \mathbf{a}) \mathbf{c} \) and \( -(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \) cancel out. - The terms \( (\mathbf{c} \cdot \mathbf{b}) \mathbf{a} \) and \( -(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \) cancel out. ### Final Result Since all terms cancel out, we conclude that: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0} \] ### Answer The final answer is \( \mathbf{0} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors barb, bar c ,bard are not coplanar then prove that (bara times barb) times (barc times overlind)+(bara times barc) times (bard times barb)+(bara times bard) times (barb times barc) is parallel to bara .

If barc=bara times barb and barb=barc times bara then

If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc times bara+vbara times barb then |(hatd.bara)(barb times barc)+(bard.barb) (barc times bara)+(bard.barc) (bara times barb)| is equal to

Let bara,barb and barc are three mutually perpendicular unit vectors and a unit vector barr satisfying the equation (barb - barc) times (barr times bara)+(barc - bara) times (barr times barb)+(bara-barb) times (barr -barc)=0 then barr is

IF barx times barb=barc times barb and barx . bara =0 then barx=

Evaluate 8times b times b times b times a times a times a times a

Evaluate a times a times c times c times c times c times d

Prove that [bara times barb bara times barc bard]=(bara.bar d)[bara barb barc]

If bara ,barb and barc are three unit vectors such that bara times (barb times barc)=1/2 barb Find the angles which bara makes with barb and barc .

Evaluate 13 times 13 times 13times a times a times a times a times a times b times b times b times b