Home
Class 12
MATHS
IF barx and bary non zero linearly indep...

IF `barx and bary` non zero linearly independent vectors such that `|barx + bary|=|barx -bary|` then

A

`barx and bary` are parallel

B

`barx and bary` are perpendicular

C

angle between `barx and bary is pi/4`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the two non-zero linearly independent vectors \( \vec{x} \) and \( \vec{y} \) given that \( |\vec{x} + \vec{y}| = |\vec{x} - \vec{y}| \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ |\vec{x} + \vec{y}| = |\vec{x} - \vec{y}| \] 2. **Square both sides:** \[ |\vec{x} + \vec{y}|^2 = |\vec{x} - \vec{y}|^2 \] 3. **Expand both sides using the formula \( |\vec{a}|^2 = \vec{a} \cdot \vec{a} \):** \[ (\vec{x} + \vec{y}) \cdot (\vec{x} + \vec{y}) = (\vec{x} - \vec{y}) \cdot (\vec{x} - \vec{y}) \] 4. **Calculate the left-hand side:** \[ \vec{x} \cdot \vec{x} + 2\vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{y} = |\vec{x}|^2 + 2\vec{x} \cdot \vec{y} + |\vec{y}|^2 \] 5. **Calculate the right-hand side:** \[ \vec{x} \cdot \vec{x} - 2\vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{y} = |\vec{x}|^2 - 2\vec{x} \cdot \vec{y} + |\vec{y}|^2 \] 6. **Set the two expanded forms equal to each other:** \[ |\vec{x}|^2 + 2\vec{x} \cdot \vec{y} + |\vec{y}|^2 = |\vec{x}|^2 - 2\vec{x} \cdot \vec{y} + |\vec{y}|^2 \] 7. **Simplify the equation:** \[ 2\vec{x} \cdot \vec{y} + 2\vec{x} \cdot \vec{y} = 0 \] \[ 4\vec{x} \cdot \vec{y} = 0 \] 8. **Since \( \vec{x} \) and \( \vec{y} \) are non-zero vectors, we can conclude:** \[ \vec{x} \cdot \vec{y} = 0 \] 9. **Interpret the result:** The dot product being zero implies that the angle \( \theta \) between the vectors \( \vec{x} \) and \( \vec{y} \) is: \[ \cos \theta = 0 \implies \theta = \frac{\pi}{2} \] ### Conclusion: The angle between the vectors \( \vec{x} \) and \( \vec{y} \) is \( \frac{\pi}{2} \) radians, which means they are perpendicular. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

if veca and vecb non-zero ad non-collinear vectors, then

If a and b are two non-zero and non-collinear vectors then a+b and a-b are

Statement-I The number of vectors of unit length and perpendicular to both the vectors hat(i)+hat(j) and hat(j)+hat(k) is zero. Statement-II a and b are two non-zero and non-parallel vectors it is true that axxb is perpendicular to the plane containing a and b

Let a, b and c be non-zero vectors and |a|=1 and r is a non-zero vector such that r times a=b and r*a=1 , then

If a and b are non-zero and non-collinear vectors, then show that axxb=["a b i"]hati+["a b j"]hatj+["a b k"]hatk

If a, b, c are non-zero, non-collinear vectors such that a vectors such that a vector p=abcos(2pi-(a,c))c and aq=ac cos(pi-(a, c)) then b+q is

Let vecx and vecy are 2 non - zero and non - collinear vectors, then the largest value of k such that the non - zero vectors (k^(2)-5k+6)vecx+(k-3)vecy and 2vecx+5vecy are collinear is

Let a and b be given non-zero and non-collinear vectors, such that ctimesa=b-c . Express c in terms for a, b and aXb.

Four non zero vectors will always be a. linearly dependent b. linearly independent c. either a or b d. none of these