Home
Class 12
MATHS
IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B...

IF `(sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^2 C)hatk` are coplanar then `cot^2 A+cot^2B+cot^2C` is

A

equal to -1

B

equal to 2

C

equal to 0

D

not defined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \cot^2 A + \cot^2 B + \cot^2 C \) given that the vectors \[ \vec{v_1} = (\sec^2 A) \hat{i} + \hat{j} + \hat{k}, \] \[ \vec{v_2} = \hat{i} + (\sec^2 B) \hat{j} + \hat{k}, \] \[ \vec{v_3} = \hat{i} + \hat{j} + (\sec^2 C) \hat{k} \] are coplanar. ### Step 1: Set up the determinant for coplanarity For three vectors to be coplanar, the scalar triple product (or the determinant of the matrix formed by these vectors) must be zero. Thus, we need to compute the determinant: \[ \begin{vmatrix} \sec^2 A & 1 & 1 \\ 1 & \sec^2 B & 1 \\ 1 & 1 & \sec^2 C \end{vmatrix} = 0 \] ### Step 2: Expand the determinant We can expand the determinant using the formula for a 3x3 matrix: \[ D = \sec^2 A \begin{vmatrix} \sec^2 B & 1 \\ 1 & \sec^2 C \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & \sec^2 C \end{vmatrix} + 1 \begin{vmatrix} 1 & \sec^2 B \\ 1 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \sec^2 B & 1 \\ 1 & \sec^2 C \end{vmatrix} = \sec^2 B \cdot \sec^2 C - 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & \sec^2 C \end{vmatrix} = \sec^2 C - 1 \) 3. \( \begin{vmatrix} 1 & \sec^2 B \\ 1 & 1 \end{vmatrix} = 1 - \sec^2 B \) Substituting these back into the determinant gives: \[ D = \sec^2 A (\sec^2 B \sec^2 C - 1) - (\sec^2 C - 1) + (1 - \sec^2 B) \] ### Step 3: Set the determinant equal to zero Setting the determinant equal to zero: \[ \sec^2 A (\sec^2 B \sec^2 C - 1) - \sec^2 C + 1 + 1 - \sec^2 B = 0 \] This simplifies to: \[ \sec^2 A \sec^2 B \sec^2 C - \sec^2 A - \sec^2 B - \sec^2 C + 2 = 0 \] ### Step 4: Substitute \( \sec^2 \) with \( 1 + \tan^2 \) Using the identity \( \sec^2 \theta = 1 + \tan^2 \theta \): \[ (1 + \tan^2 A)(1 + \tan^2 B)(1 + \tan^2 C) - (1 + \tan^2 A) - (1 + \tan^2 B) - (1 + \tan^2 C) + 2 = 0 \] Expanding this gives: \[ 1 + \tan^2 A + \tan^2 B + \tan^2 C + \tan^2 A \tan^2 B + \tan^2 B \tan^2 C + \tan^2 C \tan^2 A + \tan^2 A \tan^2 B \tan^2 C - 3 - (\tan^2 A + \tan^2 B + \tan^2 C) + 2 = 0 \] ### Step 5: Simplify the equation After simplification, we get: \[ \tan^2 A \tan^2 B + \tan^2 B \tan^2 C + \tan^2 C \tan^2 A = 1 \] ### Step 6: Use the cotangent identity Using the identity \( \cot^2 \theta = \frac{1}{\tan^2 \theta} \): \[ \frac{1}{\tan^2 A} + \frac{1}{\tan^2 B} + \frac{1}{\tan^2 C} = 1 \] This implies: \[ \cot^2 A + \cot^2 B + \cot^2 C = 1 \] ### Final Answer Thus, the value of \( \cot^2 A + \cot^2 B + \cot^2 C \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati+hatj+(sec^(2) c)hatk are coplanar, then the value of cosec^(2)A+cosec^(2)B+cosec^(2)C , is

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

Vectors 5hati+yhatj+hatk,2hati+2hatj-2hatk and -hati+2hatj+2hatk are coplaner then find the value of y.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

If the vectors 4hati+11hatj+mhatk,7hati+2hatj+6hatk and hati+5hatj+4hatk are coplanar, then m is equal to

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

If vec a =hati +3hatj , vecb = 2hati -hatj - hatk and vec c =mhati +7 hatj +3hatk are coplanar then find the value of m.

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =