Home
Class 12
MATHS
Let veca, vecb and vecc be non-zero vect...

Let `veca, vecb and vecc` be non-zero vectors such that no two are collinear and `(vecaxxvecb)xxvecc=1/3 |vecb||vecc|veca` if `theta` is the acute angle between vectors `vecb and vecc` then find value of `sin theta`.

A

`1/3`

B

`sqrt2/3`

C

`2/3`

D

`(2sqrt2)/3`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca,vecb and vecc be non-zero vectors such that no two are collinear and (vecaxxvecb)xxvecc=1/3|vecb||vecc|veca If theta is the acute angle between the vectors vecb and vecc then sin theta equals

Let veca,vecb and vecc be the non zero vectors such that (vecaxxvecb)xxvecc=1/3 |vecb||vecc|veca. if theta is the acute angle between the vectors vecb and veca then theta equals (A) 1/3 (B) sqrt(2)/3 (C) 2/3 (D) 2sqrt(2)/3

Let veca,vecb,vecc be three non-zero vectors such that [vecavecbvecc]=|veca||vecb||vecc| then

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

Let veca , vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca + vecbxxvecc + vecc xx veca = vec0 then find the value of lambda .

veca,vecb and vecc are three non-zero vectors, no two of which are collinear and the vectors veca+vecb is collinear with vecc , vecb+vecc is collinear with veca , then veca+vecb+vecc=

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .