Home
Class 12
MATHS
If hatd is a unit vectors such that hatd...

If `hatd` is a unit vectors such that `hatd=lamdabarb times barc+mubarc times bara+vbara times barb` then `|(hatd.bara)(barb times barc)+(bard.barb) (barc times bara)+(bard.barc) (bara times barb)|` is equal to

A

`|[bara barb barc]|`

B

1

C

`3|[bara barb barc]|`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the question step by step. ### Given: \[ \hat{d} = \lambda (\mathbf{b} \times \mathbf{c}) + \mu (\mathbf{c} \times \mathbf{a}) + \nu (\mathbf{a} \times \mathbf{b}) \] where \(\hat{d}\) is a unit vector. We need to find: \[ |\hat{d} \cdot \mathbf{a} (\mathbf{b} \times \mathbf{c}) + \hat{d} \cdot \mathbf{b} (\mathbf{c} \times \mathbf{a}) + \hat{d} \cdot \mathbf{c} (\mathbf{a} \times \mathbf{b})| \] ### Step 1: Calculate \(\hat{d} \cdot \mathbf{a}\) Using the expression for \(\hat{d}\): \[ \hat{d} \cdot \mathbf{a} = \lambda (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} + \mu (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{a} + \nu (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} \] The second and third terms vanish because the dot product of a vector with itself is zero: \[ \hat{d} \cdot \mathbf{a} = \lambda (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} \] ### Step 2: Calculate \(\hat{d} \cdot \mathbf{b}\) Similarly, \[ \hat{d} \cdot \mathbf{b} = \lambda (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{b} + \mu (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} + \nu (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} \] Again, the first and third terms vanish: \[ \hat{d} \cdot \mathbf{b} = \mu (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} \] ### Step 3: Calculate \(\hat{d} \cdot \mathbf{c}\) Now for \(\hat{d} \cdot \mathbf{c}\): \[ \hat{d} \cdot \mathbf{c} = \lambda (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{c} + \mu (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{c} + \nu (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \] Again, the first and second terms vanish: \[ \hat{d} \cdot \mathbf{c} = \nu (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \] ### Step 4: Substitute back into the expression Now substitute these results back into the original expression: \[ |\hat{d} \cdot \mathbf{a} (\mathbf{b} \times \mathbf{c}) + \hat{d} \cdot \mathbf{b} (\mathbf{c} \times \mathbf{a}) + \hat{d} \cdot \mathbf{c} (\mathbf{a} \times \mathbf{b})| \] This becomes: \[ |\lambda (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} (\mathbf{b} \times \mathbf{c}) + \mu (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} (\mathbf{c} \times \mathbf{a}) + \nu (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} (\mathbf{a} \times \mathbf{b})| \] ### Step 5: Recognize the scalar triple product Notice that: \[ (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a} = \text{Volume of the parallelepiped formed by } \mathbf{a}, \mathbf{b}, \mathbf{c} = [\mathbf{a}, \mathbf{b}, \mathbf{c}] \] Thus, we can express the entire expression as: \[ |[\mathbf{a}, \mathbf{b}, \mathbf{c}]| \] ### Step 6: Final Result Since \(\hat{d}\) is a unit vector, we have: \[ |[\mathbf{a}, \mathbf{b}, \mathbf{c}]| = 1 \] ### Conclusion The final answer is: \[ |[\mathbf{a}, \mathbf{b}, \mathbf{c}]| = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb) equals

If barc=bara times barb and barb=barc times bara then

IF barx times barb=barc times barb and barx . bara =0 then barx=

(bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2 is equal to

Prove that [bara times barb bara times barc bard]=(bara.bar d)[bara barb barc]

If vectors barb, bar c ,bard are not coplanar then prove that (bara times barb) times (barc times overlind)+(bara times barc) times (bard times barb)+(bara times bard) times (barb times barc) is parallel to bara .

bar(A.barB+barA.B) is equivalent to

If bara ,barb and barc are three unit vectors such that bara times (barb times barc)=1/2 barb Find the angles which bara makes with barb and barc .

Let bara,barb and barc are three mutually perpendicular unit vectors and a unit vector barr satisfying the equation (barb - barc) times (barr times bara)+(barc - bara) times (barr times barb)+(bara-barb) times (barr -barc)=0 then barr is

IF bara,barb,barc are unit vectors such that bara+barb+barc=0 then the value of bara.barb+barb.barc+barc.bara is