Home
Class 12
MATHS
(bara times hati)^2+(bara+hatj)^2+(bara ...

`(bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2` is equal to

A

`(bara)^2`

B

`3(bara)^2`

C

`2(bara)^2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\mathbf{a} \times \hat{i})^2 + (\mathbf{a} \times \hat{j})^2 + (\mathbf{a} \times \hat{k})^2\), we will follow these steps: ### Step 1: Define the vector \(\mathbf{a}\) Let \(\mathbf{a} = x \hat{i} + y \hat{j} + z \hat{k}\), where \(x\), \(y\), and \(z\) are the components of the vector \(\mathbf{a}\). ### Step 2: Calculate \(\mathbf{a} \times \hat{i}\) Using the determinant method for the cross product: \[ \mathbf{a} \times \hat{i} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 0 & 0 \end{vmatrix} \] Calculating the determinant, we get: \[ \mathbf{a} \times \hat{i} = \hat{i}(y \cdot 0 - z \cdot 0) - \hat{j}(x \cdot 0 - z \cdot 1) + \hat{k}(x \cdot 0 - y \cdot 1) = -z \hat{j} + y \hat{k} \] Thus, \[ \mathbf{a} \times \hat{i} = z \hat{j} + y \hat{k} \] ### Step 3: Calculate \((\mathbf{a} \times \hat{i})^2\) Now, we find the magnitude squared: \[ (\mathbf{a} \times \hat{i})^2 = |z \hat{j} + y \hat{k}|^2 = z^2 + y^2 \] ### Step 4: Calculate \(\mathbf{a} \times \hat{j}\) Similarly, we calculate: \[ \mathbf{a} \times \hat{j} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 0 & 1 & 0 \end{vmatrix} \] Calculating the determinant, we get: \[ \mathbf{a} \times \hat{j} = z \hat{i} - x \hat{k} \] Thus, \[ \mathbf{a} \times \hat{j} = z \hat{i} - x \hat{k} \] ### Step 5: Calculate \((\mathbf{a} \times \hat{j})^2\) Magnitude squared: \[ (\mathbf{a} \times \hat{j})^2 = |z \hat{i} - x \hat{k}|^2 = z^2 + x^2 \] ### Step 6: Calculate \(\mathbf{a} \times \hat{k}\) Now, we calculate: \[ \mathbf{a} \times \hat{k} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 0 & 0 & 1 \end{vmatrix} \] Calculating the determinant, we get: \[ \mathbf{a} \times \hat{k} = -y \hat{i} + x \hat{j} \] Thus, \[ \mathbf{a} \times \hat{k} = -y \hat{i} + x \hat{j} \] ### Step 7: Calculate \((\mathbf{a} \times \hat{k})^2\) Magnitude squared: \[ (\mathbf{a} \times \hat{k})^2 = |-y \hat{i} + x \hat{j}|^2 = y^2 + x^2 \] ### Step 8: Combine the results Now we combine all three results: \[ (\mathbf{a} \times \hat{i})^2 + (\mathbf{a} \times \hat{j})^2 + (\mathbf{a} \times \hat{k})^2 = (z^2 + y^2) + (z^2 + x^2) + (y^2 + x^2) \] This simplifies to: \[ = 2x^2 + 2y^2 + 2z^2 = 2(x^2 + y^2 + z^2) \] ### Final Result Thus, the final answer is: \[ = 2|\mathbf{a}|^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc times bara+vbara times barb then |(hatd.bara)(barb times barc)+(bard.barb) (barc times bara)+(bard.barc) (bara times barb)| is equal to

bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb) equals

If vectors barb, bar c ,bard are not coplanar then prove that (bara times barb) times (barc times overlind)+(bara times barc) times (bard times barb)+(bara times bard) times (barb times barc) is parallel to bara .

IF bar(a),bar(b),bar(c ) are vectors from the origin to three points A,B,C show that bara times barb +barb times barc+barc times bara is perpendicular to the plane ABC.

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

If barc=bara times barb and barb=barc times bara then

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

(a*hati)hati+(a*hatj)hatj+(a*hatk)hatk is equal to