Home
Class 12
MATHS
IF barx times barb=barc times barb and b...

IF `barx times barb=barc times barb` and `barx . bara` =0 then `barx=`

A

`(barb times (bara times barc))/(barb.barc)`

B

`((barb times barc) times bara)/(barb.bara)`

C

`((bara.(barc times barb))/(bara.barb)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given conditions: 1. **Given Conditions**: - \( \bar{x} \times \bar{b} = \bar{c} \times \bar{b} \) - \( \bar{x} \cdot \bar{a} = 0 \) 2. **Step 1: Cross Product Equality**: We can rewrite the first condition: \[ \bar{x} \times \bar{b} - \bar{c} \times \bar{b} = \bar{0} \] This implies that the vectors \( \bar{x} \) and \( \bar{c} \) have the same cross product with \( \bar{b} \). 3. **Step 2: Apply the Vector Triple Product Identity**: We can apply the vector triple product identity: \[ \bar{a} \times (\bar{x} \times \bar{b}) = (\bar{a} \cdot \bar{b}) \bar{x} - (\bar{a} \cdot \bar{x}) \bar{b} \] Therefore, we have: \[ \bar{a} \times (\bar{x} \times \bar{b}) = \bar{a} \times (\bar{c} \times \bar{b}) \] 4. **Step 3: Expand Both Sides**: Expanding both sides using the identity: \[ (\bar{a} \cdot \bar{b}) \bar{x} - (\bar{a} \cdot \bar{x}) \bar{b} = (\bar{a} \cdot \bar{b}) \bar{c} - (\bar{a} \cdot \bar{c}) \bar{b} \] 5. **Step 4: Substitute \( \bar{x} \cdot \bar{a} = 0 \)**: Since \( \bar{x} \cdot \bar{a} = 0 \), we can substitute this into our equation: \[ (\bar{a} \cdot \bar{b}) \bar{x} = (\bar{a} \cdot \bar{b}) \bar{c} - (\bar{a} \cdot \bar{c}) \bar{b} \] 6. **Step 5: Solve for \( \bar{x} \)**: Rearranging gives us: \[ \bar{x} = \frac{(\bar{a} \cdot \bar{c}) \bar{b} - (\bar{a} \cdot \bar{b}) \bar{c}}{\bar{a} \cdot \bar{b}} \] 7. **Step 6: Simplify**: We can express \( \bar{x} \) in terms of a cross product: \[ \bar{x} = \frac{\bar{a} \times \bar{c} \times \bar{b}}{\bar{a} \cdot \bar{b}} \] 8. **Final Expression**: Thus, we arrive at: \[ \bar{x} = \frac{\bar{c} \times \bar{b} \times \bar{a}}{\bar{b} \cdot \bar{a}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If barc=bara times barb and barb=barc times bara then

Prove that [bara times barb bara times barc bard]=(bara.bar d)[bara barb barc]

If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc times bara+vbara times barb then |(hatd.bara)(barb times barc)+(bard.barb) (barc times bara)+(bard.barc) (bara times barb)| is equal to

Let bara,barb and barc are three mutually perpendicular unit vectors and a unit vector barr satisfying the equation (barb - barc) times (barr times bara)+(barc - bara) times (barr times barb)+(bara-barb) times (barr -barc)=0 then barr is

bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb) equals

IF bar(a),bar(b),bar(c ) are vectors from the origin to three points A,B,C show that bara times barb +barb times barc+barc times bara is perpendicular to the plane ABC.

If vectors barb, bar c ,bard are not coplanar then prove that (bara times barb) times (barc times overlind)+(bara times barc) times (bard times barb)+(bara times bard) times (barb times barc) is parallel to bara .

If bara ,barb and barc are three unit vectors such that bara times (barb times barc)=1/2 barb Find the angles which bara makes with barb and barc .

Equation of the plane containing the lines barr = bara + lambdabarb and barr = barb + mu bard is

If bara,barb,barc are non-coplanar vectors, express bara times (barb times barc) as a linear combination of bara,barb,barc