Home
Class 12
MATHS
Let bara,barb and barc are three mutuall...

Let `bara,barb and barc` are three mutually perpendicular unit vectors and a unit vector `barr` satisfying the equation `(barb - barc) times (barr times bara)+(barc - bara) times (barr times barb)+(bara-barb) times (barr -barc)=0` then `barr` is

A

`1/sqrt3(bara+barb+barc)`

B

`-1/sqrt14(2bara+3barb+barc)`

C

`1/sqrt14(2bara+3barb+barc)`

D

`-1/sqrt3(bara+barb+barc)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the unit vectors \( \bar{a}, \bar{b}, \bar{c} \) and the unit vector \( \bar{r} \). The equation is: \[ (\bar{b} - \bar{c}) \times (\bar{r} \times \bar{a}) + (\bar{c} - \bar{a}) \times (\bar{r} \times \bar{b}) + (\bar{a} - \bar{b}) \times (\bar{r} - \bar{c}) = 0 \] ### Step 1: Use the vector triple product identity We can use the vector triple product identity, which states: \[ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \] Applying this identity to each term in the equation, we rewrite the equation. ### Step 2: Expand each term 1. For the first term \( (\bar{b} - \bar{c}) \times (\bar{r} \times \bar{a}) \): \[ = (\bar{b} - \bar{c}) \cdot \bar{a} \bar{r} - (\bar{b} - \bar{c}) \cdot \bar{r} \bar{a} \] 2. For the second term \( (\bar{c} - \bar{a}) \times (\bar{r} \times \bar{b}) \): \[ = (\bar{c} - \bar{a}) \cdot \bar{b} \bar{r} - (\bar{c} - \bar{a}) \cdot \bar{r} \bar{b} \] 3. For the third term \( (\bar{a} - \bar{b}) \times (\bar{r} - \bar{c}) \): \[ = (\bar{a} - \bar{b}) \cdot (\bar{r} - \bar{c}) \bar{c} - (\bar{a} - \bar{b}) \cdot \bar{c} (\bar{r} - \bar{c}) \] ### Step 3: Combine the terms Now we combine all these expanded terms and set the equation to zero: \[ [(\bar{b} - \bar{c}) \cdot \bar{a} + (\bar{c} - \bar{a}) \cdot \bar{b} + (\bar{a} - \bar{b}) \cdot (\bar{r} - \bar{c})] = 0 \] ### Step 4: Analyze the equation Since \( \bar{a}, \bar{b}, \bar{c} \) are mutually perpendicular unit vectors, we can deduce that their dot products with each other are zero. Therefore, we need to find a unit vector \( \bar{r} \) that satisfies this equation. ### Step 5: Guess and check possible solutions We can try a unit vector of the form: \[ \bar{r} = \frac{1}{\sqrt{3}} (\bar{a} + \bar{b} + \bar{c}) \] ### Step 6: Verify the solution Substituting \( \bar{r} \) back into the equation, we check if it satisfies the equation. By calculating the dot products and simplifying, we find that the left-hand side equals zero. ### Conclusion Thus, the unit vector \( \bar{r} \) that satisfies the given equation is: \[ \bar{r} = \frac{1}{\sqrt{3}} (\bar{a} + \bar{b} + \bar{c}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb) equals

IF barx times barb=barc times barb and barx . bara =0 then barx=

If barc=bara times barb and barb=barc times bara then

Prove that [bara times barb bara times barc bard]=(bara.bar d)[bara barb barc]

Let bara be a unit vector perpendicular to unit vectors barb and barc inclined at an angle a. then barb times barc is

Let veca and vecb be two non- zero perpendicular vectors. A vector vecr satisfying the equation vecr xx vecb = veca can be

If vectors barb, bar c ,bard are not coplanar then prove that (bara times barb) times (barc times overlind)+(bara times barc) times (bard times barb)+(bara times bard) times (barb times barc) is parallel to bara .

If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc times bara+vbara times barb then |(hatd.bara)(barb times barc)+(bard.barb) (barc times bara)+(bard.barc) (bara times barb)| is equal to

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0

If vecb is not perpendicular to vecc . Then find the vector vecr satisfying the equation vecr xx vecb = veca xx vecb and vecr. vecc=0