Home
Class 12
MATHS
Let veca = hati + hatj + hatk and let ve...

Let `veca = hati + hatj + hatk` and let `vecr` be a variable vector such that `vecr.hati, vecr.hatj` and `vecr.hatk` are posititve integers. If `vecr.veca le 12`, then the total number of such vectors is:

A

`^12C_3`

B

`^13C_4`

C

`^13C_9`

D

`^11C_8+^11C_9`

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If hati, hatj, hatk are unit orthonormal vectors and veca is a vector, If veca xx vecr = hatj , then veca.vecr :

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

For any vector vecr, (vecr.hati) ^(2) + (vecr.hatj)^(2) + ( vecr.hatk)^(2) is equal to

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If the planes vecr.(hati+hatj+hatk)=1, vecr.(hati+2ahatj+hatk)=2 and vecr. (ahati+a^(2)hatj+hatk)=3 intersect in a line, then the possible number of real values of a is

The angle between the planes vecr.(2hati-hatj+hatk)=6 and vecr.(hati+hatj+2hatk)=5 is

The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,zepsilonN and veca=hati+hatj+hatk . If vecr.veca=10 , then the number of possible position of P is

The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,zepsilonN and veca=hati+hatj+hatk . If vecr.veca=10 , then the number of possible position of P is

The line vecr = 2hati - 3 hatj - hatk + lamda ( hati - hatj + 2 hatk ) lies in the plane vecr. (3 hati + hatj - hatk) + 2=0 or not

Let veca=(cos theta)hati-(sin theta)hatj, vecb=(sin theta)hati+(cos theta)hatj,vecc=hatk and vecr=7hati+hatj+10hatk . IF vecr=x veca+y vecb+z vecc , then the value of (x^(2)+y^(2))/(z) is equal to