Home
Class 12
MATHS
Let veclamda=veca times (vecb +vecc), ve...

Let `veclamda=veca times (vecb +vecc), vecmu=vecb times (vecc+veca) and vecv=vecc times (veca+vecb)`, Then

A

`barlamda+barmu=barv`

B

`barlamda,barmu and barv` are coplanar

C

`barlamda+barmu+barv=0`

D

`barlamda+barv=barmu`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and their relationships. We have: 1. \(\vec{\lambda} = \vec{a} \times (\vec{b} + \vec{c})\) 2. \(\vec{\nu} = \vec{b} \times (\vec{c} + \vec{a})\) 3. \(\vec{v} = \vec{c} \times (\vec{a} + \vec{b})\) We need to explore the relationships between these vectors. ### Step 1: Expand the expressions for \(\vec{\lambda}\), \(\vec{\nu}\), and \(\vec{v}\) Using the distributive property of the cross product, we can expand each vector: \[ \vec{\lambda} = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \] \[ \vec{\nu} = \vec{b} \times \vec{c} + \vec{b} \times \vec{a} \] \[ \vec{v} = \vec{c} \times \vec{a} + \vec{c} \times \vec{b} \] ### Step 2: Combine the vectors \(\vec{\lambda}\), \(\vec{\nu}\), and \(\vec{v}\) Now, we add these three vectors together: \[ \vec{\lambda} + \vec{\nu} + \vec{v} = (\vec{a} \times \vec{b} + \vec{a} \times \vec{c}) + (\vec{b} \times \vec{c} + \vec{b} \times \vec{a}) + (\vec{c} \times \vec{a} + \vec{c} \times \vec{b}) \] ### Step 3: Rearranging and applying properties of cross products Using the property that \(\vec{x} \times \vec{y} = -(\vec{y} \times \vec{x})\), we can rewrite some terms: \[ \vec{\lambda} + \vec{\nu} + \vec{v} = \vec{a} \times \vec{b} + \vec{a} \times \vec{c} + \vec{b} \times \vec{c} - \vec{a} \times \vec{b} + \vec{c} \times \vec{a} - \vec{b} \times \vec{c} \] ### Step 4: Simplifying the expression Now, we can see that some terms will cancel out: \[ \vec{\lambda} + \vec{\nu} + \vec{v} = \vec{a} \times \vec{c} + \vec{c} \times \vec{a} \] Using the property \(\vec{c} \times \vec{a} = -(\vec{a} \times \vec{c})\): \[ \vec{\lambda} + \vec{\nu} + \vec{v} = \vec{a} \times \vec{c} - \vec{a} \times \vec{c} = \vec{0} \] ### Conclusion Since the sum of the vectors \(\vec{\lambda} + \vec{\nu} + \vec{v} = \vec{0}\), we conclude that the vectors are coplanar.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

veca, vecb,vecc are non-coplanar vectors and vecp,vecq,vecr are defined as vecp = (vecb xx vecc)/([vecb vecc veca]),q=(vecc xx veca)/([vecc veca vecb]), vecr =(veca xx vecb)/([veca vecb vecc]) then (veca + vecb).vecp+(vecb+vecc).vecq + (vecc + veca).vecr is equal to.

If veca,vecb,vecc are unity vectors such that vecd=lamdaveca+muvecb+gammavecc then lambda is equal to (A) ([veca vecb vecc])/([vecb veca vecc]) (B) ([vecb vecc vecd])/([vecb vecc veca]) (C) ([vecb vecd vecc])/([veca vecb vecc]) (D) ([vecc vecb vecd])/([veca vecb vecc])

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors). (a) [veca vecb vecc] ^(2) (b)[veca vecb vecc] ^(3) (c)[veca vecb vecc] ^(4) (d)[veca vecb vecc]

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then