Home
Class 12
MATHS
veca, vecb and vecc are three coplanar u...

`veca, vecb and vecc` are three coplanar unit vectors such that `veca + vecb + vecc=0`. If three vectors `vecp, vecq and vecr` are parallel to `veca, vecb and vecc`, respectively, and have integral but different magnitudes, then among the following options, `|vecp +vecq + vecr|` can take a value equal to

A

1

B

0

C

`sqrt3`

D

2

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

veca, vecb and vecc are three coplanar vectors such that veca + vecb + vecc=0 . If three vectors vecp, vecq and vecr are parallel to veca, vecb and vecc , respectively, and have integral but different magnitudes, then among the following options, |vecp +vecq + vecr| can take a value equal to

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is