Home
Class 12
MATHS
For three non-coplanar vectors bara,barb...

For three non-coplanar vectors `bara,barb,barc` the relation `|(bara times barb).barc|=|bara||barb||barc|` holds true , if

A

`barb.barc=barc.bara=0`

B

`bara.barb=barb.barc=0`

C

`bara.barb=barb.barc=barc.bara=0`

D

`barc.bara=bara.barb=0`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors bara, barb, barc prove : [bara-barb, barb-barc, barc-bara]=0

If barc=bara times barb and barb=barc times bara then

Prove that [bara times barb bara times barc bard]=(bara.bar d)[bara barb barc]

Three points having position vectors bara,barb and barc will be collinear if

Let bar a,bar b,bar c be three non-coplanar vectors and bar d be a non-zero vector, which is perpendicularto bar a+bar b+bar c . Now, if bar d= (sin x)(bar a xx bar b) + (cos y)(bar b xx bar c) + 2(bar c xx bar a) then minimum value of x^2+y^2 is equal to

If bara,barb,barc are non-coplanar vectors, express bara times (barb times barc) as a linear combination of bara,barb,barc

IF bara,barb,barc are unit vectors such that bara+barb+barc=0 then the value of bara.barb+barb.barc+barc.bara is

IF barx times barb=barc times barb and barx . bara =0 then barx=

Show that vectors |barb|bara+|bara|barb and |barb||bara-|bara|b are orthogonal.

bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb) equals