Home
Class 12
MATHS
If bara=hati+hatj+hatk , bara.barb=2 and...

If `bara=hati+hatj+hatk , bara.barb=2 and bara times barb=2hati+hatj-3hatk` then

A

`bara+barb=5hati-4hatj+2hatk`

B

`bara+barb=3hati+2hatk`

C

`barb=2hati-hatj+hatk`

D

`barb=hati-2hatj-3hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vectors and their relationships. ### Given: 1. \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k} \) 2. \( \mathbf{a} \cdot \mathbf{b} = 2 \) 3. \( \mathbf{a} \times \mathbf{b} = 2\hat{i} + \hat{j} - 3\hat{k} \) ### Step 1: Express the vector \( \mathbf{b} \) Let’s assume \( \mathbf{b} = x\hat{i} + y\hat{j} + z\hat{k} \). We need to find \( x, y, z \). ### Step 2: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \) Using the dot product formula: \[ \mathbf{a} \cdot \mathbf{b} = (1)(x) + (1)(y) + (1)(z) = x + y + z \] Setting this equal to 2: \[ x + y + z = 2 \quad \text{(1)} \] ### Step 3: Calculate the cross product \( \mathbf{a} \times \mathbf{b} \) Using the determinant for the cross product: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] Calculating this determinant: \[ \mathbf{a} \times \mathbf{b} = \hat{i} \begin{vmatrix} 1 & 1 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ x & y \end{vmatrix} \] Calculating the minors: \[ = \hat{i}(1z - 1y) - \hat{j}(1z - 1x) + \hat{k}(1y - 1x) \] \[ = (z - y)\hat{i} - (z - x)\hat{j} + (y - x)\hat{k} \] Setting this equal to \( 2\hat{i} + \hat{j} - 3\hat{k} \): \[ (z - y) = 2 \quad \text{(2)} \] \[ -(z - x) = 1 \quad \Rightarrow \quad z - x = -1 \quad \text{(3)} \] \[ (y - x) = -3 \quad \text{(4)} \] ### Step 4: Solve the system of equations From equations (2), (3), and (4), we can express \( z \) in terms of \( y \) and \( x \): 1. From (2): \( z = y + 2 \) 2. From (3): \( z = x - 1 \) 3. From (4): \( y = x - 3 \) Substituting \( y \) from (4) into (2): \[ z = (x - 3) + 2 = x - 1 \] Now we have: \[ z = x - 1 \quad \text{and} \quad z = x - 1 \quad \text{(consistent)} \] Now substituting \( z \) into (1): \[ x + (x - 3) + (x - 1) = 2 \] \[ 3x - 4 = 2 \] \[ 3x = 6 \quad \Rightarrow \quad x = 2 \] Now substituting \( x \) back to find \( y \) and \( z \): \[ y = 2 - 3 = -1 \] \[ z = 2 - 1 = 1 \] ### Final Result: Thus, \( \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If bara = 2hati- hatj+ hatk ,b = hati + hatj - 2 k barc = hati+ 3 hatj- hatk , find lambda such that bara is perpendicular to lambda barb + barc

If barc=bara times barb and barb=barc times bara then

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is (a) hati - hatj + hatk (b) 2hati - hatk (c) hati (d) 2hati

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=(hati+hatj+hatk), and veca.vecb=1 and vecaxxvecb = -(hati-hatk) then vecb is (A) hati-hatj+hatk (B) 2hatj-hatk (C) hatj (D) 2hati

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk