Home
Class 12
MATHS
If veca,vecb,vecc are three vectors such...

If `veca,vecb,vecc `are three vectors such that` |vec b∣=|vecc|` then `{(veca+vecb)×(veca+vecc)}×{(veca+vecb)×(veca+vecc)}×{(vecb×vecc).(vecb+vecc)}=`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \{(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})\} \times \{(\vec{b} \times \vec{c}) \cdot (\vec{b} + \vec{c})\} \] Given that \(|\vec{b}| = |\vec{c}|\), we can proceed with the solution step by step. ### Step 1: Simplify the Cross Product First, we simplify the expression \((\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})\). Using the distributive property of the cross product: \[ (\vec{a} + \vec{b}) \times (\vec{a} + \vec{c}) = \vec{a} \times \vec{a} + \vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c} \] Since \(\vec{a} \times \vec{a} = \vec{0}\), this simplifies to: \[ \vec{a} \times \vec{c} + \vec{b} \times \vec{a} + \vec{b} \times \vec{c} \] ### Step 2: Cross Product with Itself Next, we need to evaluate the expression: \[ \{(\vec{a} + \vec{b}) \times (\vec{a} + \vec{c})\} \times \{(\vec{b} \times \vec{c}) \cdot (\vec{b} + \vec{c})\} \] Since we are taking the cross product of a vector with itself, we know that: \[ \vec{u} \times \vec{u} = \vec{0} \] Thus, if we denote \( \vec{p} = (\vec{a} + \vec{b}) \times (\vec{a} + \vec{c}) \), we can see that: \[ \vec{p} \times \vec{p} = \vec{0} \] ### Step 3: Final Expression Now, we can conclude that the entire expression evaluates to: \[ \vec{0} \times \{(\vec{b} \times \vec{c}) \cdot (\vec{b} + \vec{c})\} = \vec{0} \] ### Conclusion Therefore, the final result of the expression is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca,vecb,vecc are coplanar vectors , then show that |{:(veca,vecb,vecc),(veca*veca,veca*vecb,veca*vecc),(vecb*veca,vecb*vecb,vecb*vecc):}|=vec0

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to