Home
Class 12
MATHS
Let A(2hat(i)+3hat(j)+5hat(k)), B(-hat(i...

Let `A(2hat(i)+3hat(j)+5hat(k)), B(-hat(i)+3hat(j)+2hat(k)) and C(lambdahat(i)+5hat(j)+muhat(k))` are vertices of a triangle and its median through A is equally inclined to the positive directions of the axes, the value of `2lambda-mu` is equal to

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Vertices of a triangle are given by hat(i)+3hat(j)+2hat(k), 2hat(i)-hat(j)+hat(k) and -hat(i)+2hat(j)+3hat(k) , then area of triangle is (in units)

What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+m hat(j)+5 hat(k) are coplanar?

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Prove that the points hat i- hat j ,4 hat i-3 hat j+ hat k and 2 hat i-4 hat j+5 hat k are the vertices of a right angled triangle.

Prove that the points hat i- hat j ,4 hat i-3 hat j+ hat k and 2 hat i-4 hat j+5 hat k are the vertices of a right angled triangle.