Home
Class 12
MATHS
Given three vectors eveca, vecb and vecc...

Given three vectors e`veca, vecb and vecc` two of which are non-collinear. Futrther if `(veca + vecb)` is collinear with `vecc, (vecb +vecc)` is collinear with `veca, |veca|=|vecb|=|vecc|=sqrt2` find the value of `veca. Vecb + vecb.vecc+vecc.veca`

Text Solution

Verified by Experts

The correct Answer is:
3
Promotional Banner

Similar Questions

Explore conceptually related problems

veca,vecb and vecc are three non-zero vectors, no two of which are collinear and the vectors veca+vecb is collinear with vecc , vecb+vecc is collinear with veca , then veca+vecb+vecc=

If veca, vecb and vecc are three non-zero vectors, no two of which are collinear, veca +2 vecb is collinear with vecc and vecb + 3 vecc is collinear with veca , then find the value of |veca + 2vecb + 6vecc| .

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

veca, vecb ,vecc are three non zero vectors no two of which are collonear and the vectors veca + vecb be collinear with vecc,vecb+vecc to collinear with veca then veca+vecb+vecc the equal to ? (A) veca (B) vecb (C) vecc (D) None of these

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb.vecc + vecc.veca .

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is