Home
Class 12
MATHS
Let veca=hati-hatj,b=hati+2hatj+2hatk,ve...

Let `veca=hati-hatj,b=hati+2hatj+2hatk,vecc=hati-hatj+hatk and vecd = -2hati-hatj-hatk` then the shortest distance between the lines `vecr=veca+tvecb and vecr=vecc+pvecd` is k , then the value of `1/k^2` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance \( k \) between the two lines given by the vectors \( \vec{r} = \vec{a} + t\vec{b} \) and \( \vec{r} = \vec{c} + p\vec{d} \), we will follow these steps: ### Step 1: Define the vectors Given: - \( \vec{a} = \hat{i} - \hat{j} \) - \( \vec{b} = \hat{i} + 2\hat{j} + 2\hat{k} \) - \( \vec{c} = \hat{i} - \hat{j} + \hat{k} \) - \( \vec{d} = -2\hat{i} - \hat{j} - \hat{k} \) ### Step 2: Calculate \( \vec{c} - \vec{a} \) \[ \vec{c} - \vec{a} = (\hat{i} - \hat{j} + \hat{k}) - (\hat{i} - \hat{j}) = \hat{k} \] ### Step 3: Calculate \( \vec{b} \times \vec{d} \) To find \( \vec{b} \times \vec{d} \), we set up the determinant: \[ \vec{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad \vec{d} = \begin{pmatrix} -2 \\ -1 \\ -1 \end{pmatrix} \] The cross product is given by: \[ \vec{b} \times \vec{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ -2 & -1 & -1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 2 & 2 \\ -1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} \] \[ = \hat{i} (2 \cdot (-1) - 2 \cdot (-1)) - \hat{j} (1 \cdot (-1) - 2 \cdot (-2)) + \hat{k} (1 \cdot (-1) - 2 \cdot (-2)) \] \[ = \hat{i} ( -2 + 2) - \hat{j} (-1 + 4) + \hat{k} (-1 + 4) \] \[ = 0\hat{i} + 3\hat{j} + 3\hat{k} = 3\hat{j} + 3\hat{k} \] ### Step 4: Calculate the modulus of \( \vec{b} \times \vec{d} \) \[ |\vec{b} \times \vec{d}| = \sqrt{0^2 + 3^2 + 3^2} = \sqrt{0 + 9 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Step 5: Calculate the shortest distance \( k \) Using the formula for the shortest distance between two lines: \[ d = \frac{|(\vec{c} - \vec{a}) \cdot (\vec{b} \times \vec{d})|}{|\vec{b} \times \vec{d}|} \] Substituting the values: \[ d = \frac{|\hat{k} \cdot (3\hat{j} + 3\hat{k})|}{3\sqrt{2}} \] Calculating the dot product: \[ \hat{k} \cdot (3\hat{j} + 3\hat{k}) = 0 + 3 = 3 \] Thus, \[ d = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Step 6: Find \( \frac{1}{k^2} \) Since \( k = \frac{1}{\sqrt{2}} \): \[ k^2 = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] Thus, \[ \frac{1}{k^2} = 2 \] ### Final Answer The value of \( \frac{1}{k^2} \) is \( \boxed{2} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

Let veca=hati+hatj+hatk, vecb=-hati+hatj+hatk, vecc=hati-hatj+hatk and vecd=hati+hatj-hatk . Then, the line of intersection of planes one determined by veca, vecb and other determined by vecc, vecd is perpendicular to

Let veca=hati+hatj+hatk, vecb=hati-hatj+hat2k and vecc=xhati+(x-2)hatj-hatk . If the vector vecc lies in the plane of veca and vecb then x equals

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

Let veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0 is