Home
Class 12
MATHS
The domain of the function f9x)=x/(sqrt(...

The domain of the function `f9x)=x/(sqrt(sin(I nx)-cos(I nx))),(n in Z)` is `(e^(2npi),e^((3n+1/2)pi))` (b) `(e^((2n+1/4)pi),e^((2n+5/4)pi))` `(e^((2n+1/4)pi),e^((2n-3/4)pi))` (d) none of these

Text Solution

Verified by Experts

The correct Answer is:
`(e^((2npi+pi//4)pi) lt x lt e^((2nx+5pi//4)))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=x/(sqrt(sin(lnx)-cos(lnx))),(n in Z) is (a) (e^(2npi),e^((3n+1/2)pi)) (b) (e^((2n+1/4)pi),e^((2n+5/4)pi)) (e^((2n+1/4)pi),e^((2n-3/4)pi)) (d) none of these

The domain of definition of the function f(x)=sqrt(-cosx)+sqrt(sinx) is: [2npi,2npi+pi/2],n in I b. [2npi,(2n+1)pi],n in I c. [2n+1/2pi(2n+1)pi],n in I d. [(2n+1)pi,(2n+3/2)pi],n in I

Function f(x)=sin(lnx)-"cos"(lnx) is (a)M.I. in [e^(2npipi/4),e^(2npi+(3pi)/4)] (b)M.D. In [e^(2npi+(3pi)/4),e^(2npi+(7pi)/4)] (c)M.D. in [e^(2npi(5pi)/4),e^(2npipi/4)] (d)M.I. in [e^(2npi+(3pi)/4),e^(2npi+(7pi)/4)]

Let f(x)=e^(cos^(-1){sin(x+pi/3)}) Then, f((8pi)/9)= (a) e^(5pi//18) (b) e^(13pi//18) (c) e^(-2pi//18) (d) none of these

Let f(x)=e^cos^((-1)){sin(x+pi/3)}dot Then, f((8pi)/9)= e^(5pi//18) (b) e^(13pi//18) (c) e^(-2pi//18) (d) none of these

Find the point of inflection of the function: f(x)=sin x (a) 0 (b) n pi,n in Z (c) (2n+1)(pi)/(2),n in Z (d) None of these

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (4pi)/3 (d) (5pi)/3 (e) none of these

The value of lim_(x rarr 1)(2-x)^(tan((pix)/2)) is (a) e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

int_(-pi//4)^(pi//4) \ (e^x sec^2 \ dx)/(e^(2x)-1) is equal to (i) 0 (ii) 2 (iii) e (iv)none of these