Home
Class 12
MATHS
f(x)=e^(-1/x),w h e r ex >0, Let for eac...

`f(x)=e^(-1/x),w h e r ex >0,` Let for each positive integer `n ,P_n` be the polynomial such that `(d^nf(x))/(dx^n)=P_n(1/x)e^(-1/x)` for all `x > 0.` Show that `P_(n+1)(x)=x^2[P_n(x)-d/(dx)P_n(x)]`

Text Solution

Verified by Experts

The correct Answer is:
`x^(2)[P_(n)(x)-(dP_(n)(x))/(dx)].`
Promotional Banner

Similar Questions

Explore conceptually related problems

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

If P(1)=0a n d(d P(x))/(dx)>P(x) for all x>=1. Prove that P(x)>0 for all x>1

If f(x) =(p-x^n)^(1/n) , p >0 and n is a positive integer then f[f(x)] is equal to

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.

If n be a positive integer and P_n denotes the product of the binomial coefficients in the expansion of (1 +x)^n , prove that (P_(n+1))/P_n=(n+1)^n/(n!) .

Let n be a positive integer with f(n) = 1! + 2! + 3!+.........+n! and p(x),Q(x) be polynomial in x such that f(n+2)=P(n)f(n+1)+Q(n)f(n) for all n >= , Then

Let n be positive integer such that, (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) , then a_(r) is :

If P(1)=0a n d(d P(x))/(dx)gtP(x) , for all xge1 . Prove that P(x)>0 for all x>1.

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

Prove that (d^n)/(dx^n)(e^(2x)+e^(-2x))=2^n[e^(2x)+(-1)^n e^(-2x)]